

STUDENT COMPANION NSW

Pearson Secondary Maths 7NSW

Student Companion

Contributing authors:

Greg Carroll, David Coffey, Grace Jefferson, Daine Oliver, Shaun Oliver, Sarah Plummer, Nicola Silva

[^0]
Pearson Australia

(a division of Pearson Australia Group Pty Ltd)
459-471 Church Street
Level 1, Building B
Richmond, Victoria 3121
www.pearson.com.au
Copyright © Pearson Australia 2023
(a division of Pearson Australia Group Pty Ltd)
First published 2023 by Pearson Australia
2026202520242023
10987654321

Reproduction and communication for educational purposes

The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that that educational institution (or the body that administers it) has given a remuneration notice to the Copyright Agency under the Act. For details of the copyright licence for educational institutions contact the Copyright Agency (www. copyright.com.au).
Reproduction and communication for other purposes
Except as permitted under the Act (for example any fair dealing for the purposes of study, research, criticism or review), no part of this book may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All enquiries should be made to the publisher at the address above. This book is not to be treated as a blackline master; that is, any photocopying beyond fair dealing requires prior written permission.
Project Leads: Natalie Bennett, Julian Lumb, Jack Sagar,
Sarah Suess
Development Editor:
Schools Programme Manager: Michelle Thomas
Production Editors: Maddy Higginson, Jaimi Kuster
Editor:
Designer:
Rights \& Permissions Editor: Amirah Fatin Binte Mohamed
Sapi'ee
Illustrators: DiacriTech and QBSLEarning
Proofreader:
Printed in Australia
ISBN 9780655713821
Pearson Austratia Group Pty Ltd ABN 40004245943

1 Computation with integers X
Understand integers and operations X
Add and subtract integers X
Model and solve practical problems using integers X
Multiply and divide integers X
Solve problems by multiplying and dividing integers X
Using the four operations with integers X
2 Understanding fractions and decimals X
Understand and create equivalent fractions X
The lowest common denominator and comparing fractions X
Simplify fractions X
Understand how to add and subtractfractionsUnderstand mixed numbers andimproper fractions
Calculate the fraction of an amountUnderstand how to multiply fractionsx
Understand how to divide fractions X
Locate fractions and decimals on a number line X
Compare fractions and decimals on a number line X
Rounding decimals for different purposes X
Add and subtract decimals X
Understand how to multiply decimals X
Understand how to divide decimals X
Identify and use irrational numbers X
Identify the golden ratio andmake the connection between thecircumference and diameter of anycircleX
Identify and use terminating, recurringand non-recurring decimalsX
3 Algebraic techniques X
Understand variables in algebra X
Identify and simplify like terms X
Calculate the value of algebraic expressions X
Write algebraic expressions in context XUnderstand and use the distributivelaw to expand simple algebraicexpressionsX
Factorise simple algebraicexpressionsX
Simplify algebraic expressions involving multiple operations X
4 Understanding percentages X
Un Understand the relationship between decimals, percentages and fractions X
Choose an appropriate representation to solve problems X
Determine the proportion of a quantity XUnderstand percentage as applied totaxationX
Use fractions, decimals and percentages to solve financial problems X
Percentage discounts and mark-ups X
Understand percentage increase and decrease X
Understand percentage changes in practical situations X

Contents

5 Equations

Write linear equations to represent
simple word problems
Write linear equations to represent diagrams and patternsX

Use flowcharts to determine the value of an expressionX
Use flowcharts to solve linear equationsX
Use a balance method to solve linear equations X
Understand solutions to simple quadratic equations X
Solve simple quadratic equations X X
6 IndicesUnderstand and calculate squaresand square rootsUnderstand and calculate cubes andcube rootsUnderstand and use index notationto represent numbersRepresent numbers in prime factorformX
Understand and identify commonfactors
Understand and use expanded notation to represent numbers X
Establish and apply the index law for multiplication X
Establish andapply the index law for division X
Establish and apply the index lawfor raising a power to a powerEstablish and apply the index lawfor raising to the power of zero

X

X7 Length and perimeter X
Estimate length and convert between units of length X
Calculate the perimeter of quadrilaterals X
Determine unknown side lengths from a given perimeter X
8 Areas of triangles and quadrilaterals X
Understand and convert area units X
Calculate areas of rectangles X
Calculate the areas of parallelograms and rhombuses X
Calculate areas of triangles X
Calculate areas of trapeziums X
Calculate areas of kites and rhombuses X
9 Angle relationships X
Use angles terminology and symbols X
Determine the size of angles at a point X
Determine the size of angles with transversals on parallel lines X
10 Data Classification X
Understand different data types X
Classify categorical data as ordinal or nominal X
Construct and interpret pictograms X
Construct and interpret column graphs X
Construct and interpret divided bargraphs and sector graphs X
Understand stem-and-leaf plots X
Create and interpret statistical plots X
Interpret line graphs and histograms X
Construct line graphs, histograms andpolygons
Choose appropriate data representationsX

How to use this Student Companion

The Student Companion is a complementary resource that offers a print medium for corresponding lessons in Pearson Secondary Teaching Hub. It is designed to support teaching and learning by providing learners with a place to create a portfolio of learning to suit their individual needs, whether you are:

- supporting a blended classroom using the strengths of print and digital
- preparing for exams by creating a study guide or bound reference

■ needing a tool to differentiate learning or

- looking for meaningful homework tasks.

Learners can develop their portfolio of learning as part of classroom learning or at home as an additional opportunity to engage and re-engage with the knowledge and skills from the lesson.
This could be done as prior learning in a flipped classroom environment or as an additional revision or homework task.

Learning intention and success criteria

Worked examples

Worked examples provide learners with a step-by-step solution to a problem. The worked examples in the Student Companion correspond to those in the digital lesson and are provided for each skill to:
■ scaffold learning

- support skill acquisition
- reduce the cognitive load.

The worked examples are an effective tool to demonstrate what success looks like. The 'try yourself' format of the worked examples in the Student Companion support the gradual release of responsibility. Learners can view a completed worked example and a video walkthrough of the worked example in the corresponding digital lesson and then apply the scaffolded steps themselves to solve a unique problem.

Practice questions are provided in the student companion so that learners can apply the knowledge and skills obtained in the worked example given. These questions are designed to ensure learners build confidence and demonstrate efficiency. They follow on from the Check your understanding questions beside the corresponding worked example in the digital lesson.

Each lesson in the student companion contains a space for students to reflect on their understanding. The simple and intuitive design of the lesson reflection tool allows students to scale their confidence, reflect on their learning and identify areas in which they need support.

SC 3: I can use a factor tree to determine the prime factors of a number
Worked example: Using a factor tree to determine the prime factors of a number.
Use a factor tree to determine the prime factors of 24.

1 Complete the following factor trees to determine the prime factors of the number given.
(a)

The prime factors are \qquad
(c) 189

The prime factors are \qquad

RATE MY
LEARNING

Number properties

Understand and calculate squares and square roots

Learning intention: To be able to recognise circle features and understand the relationship between the radius and the diameter of a circle.
\square SC 1: I can identify square numbers.
\square SC 2: I can determine the square root of a square number.
\square SC 3: I can place the square root of any number between its two closest natural numbers.
\square SC 4: I can apply squares and square roots to real-life situations.
SC 1: I can identify square numbers
Worked example: Identifying common square numbers
(a) Is 16 a square number?

Is 16 a square number?
Thinking Working Recall the factors of 16. Can 16 be written as the product of a number multiplied by itself?
Write the answer.

(b) Is 8 a square number?

Thinking	Working
Recall the factors of 8.	
Can 8 be written as the	
product of a number	
multiplied by itself?	

1 Some square numbers are represented by counters in the diagrams below.

(a) The diagrams show the first four square numbers 1, 4, 9 and 16. Explain what these numbers represent.
\qquad
\qquad
\qquad

Number properties

(b) How many counters would you need to make the fifth square number?
(c) You can also create squares with arrays On the grid below, draw squares with sides 5 units and 6 units.

(d) Determine the area of the squares you drew in part (c).
(e) Explain how you would calculate the value of a square number.
(f) How would you work out the area of a square with side lengths of 8 units?
\qquad
\qquad
2 Complete this table of the first 20 square numbers.

$1^{2}=1$	$6^{2}=$		
$2^{2}=4$			
$3^{2}=9$			
$4^{2}=$			
$5^{2}=$			

3 Which of the following numbers are square numbers? Justify your answer.
(a) 12
(b) 36
(c) 50
(d) 144

SC 2: I can determine the square root of a square number

Worked example: Calculating the square root of a square number

Determine the square root of the square number 36 .

Thinking	Working
Determine the number that when multiplied by itself gives the square number.	
Write the answer.	

1 Determine the square root of the following square numbers.
(a) 9
(b) 49
(c) 64
(d) 121
(e) 196
(f) 225

2 Rio says, "As the square root of 4 is 2 . Then the square root of 16 is 8 ".
Explain Rio's mistake.

\qquad

Number properties

SC 3: I can place the square root of any number between its two closest natural numbers

Worked example: Estimating the value of the square root of a number

The square root of 60 is between which two whole numbers?

Thinking	Working
Recall the square numbers above and below 60.	
Write the square root for each number.	
Write the answer.	

1 The square root of 20 is between which two whole numbers?

2 Determine the whole number above and below the square root of:
(a) 12
(b) 40
(c) 115
(d) 300

3 Place the following square roots on the number line shown.
(a) $\sqrt{6}$
(b) $\sqrt{18}$
(c) $\sqrt{77}$
(d) $\sqrt{250}$

SC 4: I can apply squares and square roots to real-life situations

Worked example: Applying squares and square roots

A bathroom fitter will place tiles on a square section of wall. The square measures 2 m on each side. Each tile is a square measuring $20 \times 20 \mathrm{~cm}$. How many tiles are required?

Thinking	Working
Calculate the number of tiles along one edge of the square.	
Since the section of wall is square, the number of tiles is found by squaring 10.	
Write the answer.	

1 A carpet fitter is laying square carpet tiles in a room. The roon has a floor that is a square with sides 5 m . Each floor tile is $50 \times 50 \mathrm{~cm}$. How many carpet tiles are required?

2 A bathroom fitter lays tiles on a square section of floor. The square measures 3 m on each side. Each tile is a square measuring $20 \times 20 \mathrm{~cm}$. How many tiles are required?
\qquad

3 A bathroom fitter lays tiles in a square room, measuring 3.9 m on each side. Each tile is a square measuring $30 \times 30 \mathrm{~cm}$. How many tiles are required?
\qquad
\qquad
\qquad

Understand and use index notation to represent numbers

Learning intention: To understand and be able to use index notation to represent numbers

SC 1: I can correctly use the terms 'base' and 'index'.
\square SC 2: I can express repeated multiplication by using index notation.

SC 1: I can correctly use the terms 'base' and 'index'.

Worked example: Identifying the base and index

Identify the base and index in 5^{2}.

Thinking	Working
Identify the base. The base is the large number at the bottom.	
Identify the index. The index (or power) is the superscripted number.	

1 Identify the base and index in 7^{3}.

2 Identify the base and index in:
(a) 3^{2}
(b) 4^{5}
(c) x^{4}
(d) m^{n}
(e) 7^{y}

3 You can calculate the value of expressions written in index form.
For example, $2^{6}=x$.
Since $2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64, x=64$.
Calculate the value of x in these equations.
(a) $2^{4}=x$
(b) $3^{2}=x$
(c) $3^{3}=x$
(d) $3^{4}=x$
(e) $4^{3}=x$

SC 2: I can express repeated multiplication by using index notation

Worked example: Understanding the link between index and expanded form.

Write the expression $9 \times 9 \times 9 \times 9$ in index form.

Thinking	Working
Identify the base.	
Identify the index by counting the number of times the base occurs in the expression.	
Write the answer.	

1 Write the following in indext form.
(a) $5 \times 5 \times 5 \times 5 \times 5 \times 5$
(b) $5 \times 5 \times 5 \times 5 \times 5$
(c) $5 \times 5 \times 5 \times 5$
(d) $5 \times 5 \times 5$
(e) 5×5

2 Write the following expressions in index form.
(a) $8 \times 8 \times 8 \times 8$
(b) $4 \times 4 \times 4 \times 4$
(c) $20 \times 20 \times 20 \times 20$
(d) $z \times z \times z \times z$

3 When two or more factors are involved, they can be simplified by writing them in index form. For example, $2 \times 2 \times 5 \times 5 \times 5=2^{2} \times 5^{3}$. Write the following expressions in index form.
(a) $3 \times 3 \times 3 \times 5 \times 5$
(b) $4 \times 4 \times 7 \times 7 \times 7 \times 7$
(c) $3 \times 3 \times 3 \times 3 \times 3 \times 11 \times 11 \times 11$
(d) $3 \times 3 \times 5 \times 5 \times 5 \times 5 \times 7 \times 7 \times 7$

Number properties

Represent numbers in prime factor form

Learning intention: To be able to represent numbers in prime factor form

\square SC 1: I can determine the prime factors of a number
\square SC 2: I can use a factor ladder to find determine the prime factors of a number
\square SC 3: I can use a factor tree to determine the prime factors of a number
\square SC 4: I can write a number as a product of its prime factors
SC 1: I can determine the prime factors of a number
Worked example: Determine the prime factors of 24
Determine the prime factors of 24 .

Thinking	Working
Write the first factor pair as a product of 1 and itself.	
Try $2,3,4,5,6$ until there is no difference between the two factors, or the factors start repeating.	
List the factors.	
Highlight the factors that are prime numbers.	
Write the answer.	

1 Determine the prime factors of:
(a) 8
(b) \qquad
(c) 100

SC 2: I can use a factor ladder to find determine the prime factors of a number.

Worked example: Using a factor ladder to determine the prime factors of a number.

(a) Determine the prime factors of 18 using a factor ladder.

Thinking	Working
Recall the smallest prime number.	
	Divide the number by the smallest prime number until it no longer divides evenly or until the final division gives a result of 1.
Recall the next prime number.	
Divide the result in the ladder by the next prime number until it no longer divides evenly or until the final division gives a result of 1.	
Answer the question.	

(b) Determine the prime factors of 24 using a factor ladder.

Thinking	Working
Recall the smallest prime number.	
Divide the number by the smallest prime number until it no longer divides evenly or until the final division gives a result of 1.	
Recall the next prime number.	
Divide the result in the ladder by the next prime number until it ho longer divides evenly or until the final division gives a result of 1. Try dividing by the next prime number 3. Answer the question.	

1 Use a factor ladder to determine the prime factors of:
(a) 8
(b) 20
(c) 100

SC 3: I can use a factor tree to determine the prime factors of a number.

Worked example: Using a factor tree to determine the prime factors of a number.

Use a factor tree to determine the prime factors of 24.

Thinking	Working
Recall any factor pair that does	
not include l.	
Recall a factor pair for any of	
the non-prime factors that does	
not include l. Continue until all	
factors listed are prime.	
Answer the question.	

1 Complete the following factor trees to determine the prime factors of the number given.
(a) 30

The prime factors are

The prime factors are \qquad

2 Use a tree diagram to determine the prime factors of
(a) 27
(b) 45

SC 4: I can write a number as a product of its prime factors

Worked example: Writing the prime factorisation of a number in index form

Write 92 as a product of its prime factors. Express your answer in index form.

Thinking	Working
Use a factor ladder or tree to determine the prime factors of 92.	
Write the prime factors as a product.	
Express your answer in index form.	

1 Express the following numbers as a product of their prime factors, then write them in index form.
(a) 27
(b) 20
(c) 18
(d) 36
(e) 225

2 In expanded form Noah wrote the prime factors of 8 as $2 \times 2 \times 2$. Noah then tried to simplify this by writing it in indext form as $8=2 \times 3$. What mistake has Noah made?

3 Answertrue or false for each of the statements below.
(a) The factors of 11 are 1 and 11 .
(b) The prime factors of 11 are 1 and 11 .
(c) The prime factors of 10 are 2 and 5 .
(d) 44 written as a product of its prime factors is $2 \times 2 \times 11$. \qquad

Understand and identify common factors

Learning intention: To understand and be able to identify common factors
SC 1: I can determine the highest common factor (HCF) of a pair of numbers.
\square SC 2: I can determine the lowest common multiple (LCM) of a pair of numbers.
\square SC 3: I can solve problems involving highest common factors and lowest common multiples.

SC 1: I can determine the highest common factor (HCF) of a pair of numbers

Worked example: Finding the highest common factor (HCF)
Determine the highest common factor (HCF) of 36 and 42.
Determine the highest common factor (HCF) of 36 and 42.

Thinking	Working
List the factors of each number.	
From the lists of factors, identify the factors common to both lists. Use this list to identify the highest common factor (HCF)	
Answer the question.	

1 Determine the highest common factor (HCF) of 16 and 24.
(a) List the factors of 18 .
(b) List the factors of 24 .
(c) List the common factors of 16 and 24 .
(d) Identify the highest common factor (HCF).
\qquad
\qquad
\qquad

Determine the highest common factor (HCF) of 33 and 63.
(a) List the factors of 33 .
(b) List the factors of 63 .
(c) List the common factors of 33 and 63 .
(d) Identify the highest common factor (HCF). \qquad

SC 2: I can determine the lowest common multiple (LCM) of a pair of numbers

Worked example: Finding the lowest common multiple (LCM)

Determine the lowest common multiple of 8 and 10 .

Thinking	Working
List the first five multiples for each.	
From the list of multiples, identify the lowest multiple that is common to both lists.	
Answer the question.	

1 Determine the lowest common multiple (LCM) of 12 and 15.
(a) List the first 5 multiples of 12 .
(b) List the first 5 multiples of 15 .
(c) Identify the lowest common multiple (LCM).

2 Determine the lowest common multiple (LCM) of 4 and 7.
(a) List the first 8 multiples of 4 .
(b) List the first 8 multiples of 7 .
(c) Identify the lowest common multiple (LCM).

3 Determine the lowest common multiple (LCM) of 6,9 and 12 .
(a) List the first 6 multiples of 6 .
(b) List the first 4 multiples of 9 .
(c) List the first 3 multiples of 12 .
(d) dentify the lowest common multiple (LCM).
\qquad
\qquad
\qquad
\qquad

Number properties

SC 3: I can solve problems involving highest common factors and lowest common multiples

Worked example: Solving problems using the lowest common multiple (LCM)

Determine the smallest whole number which when divided by $2,3,4$ and 9 leaves a remainder of 1 each time.

Thinking	Working		
Describe the steps needed to solve the problem.			
		Determine the lowest common	multiple of $2,3,4$ and 9.
:---			

Worked example: Solving problems using the highest common factor (HCF)

An artist has 16 red tiles and 40 blue tiles. The tiles will be laid in rows containing the same number of red tiles and blue tiles, using all the tiles. How many rows will the artist need to create and how many of each tile will be in a row?

Thinking	Working
Describe the steps needed to	
solve the problem.	
List the factors of each number and identify the highest factor common to both lists. .	
Interpret the highest common factor (HCF).	
Determine the number of plants in each row.	
Write the answer.	

1 Four lights are set to flash at intervals of 5, 7, 10 and 14 seconds. If they all flash at 10am, when will they next all flash at the same time?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 Paper straws are sold in boxes of 20 and paper cups in packets of 15 . You want to have the same number of straws and cups for a school prom. What is the minimum number of each

3 Three cyclist are practicing by cycling laps âround a cross county course. They take 4 minutes, 5 minutes and 6 minutes respectively to complete one lap. They all started from the start line at the same time. How long does it take before they next all cross the starting line at the same time.
\qquad
\qquad
\qquad

Understand and use expanded notation to represent numbers

Learning intention: To understand and be able to use expanded notation to represent numbers
\square SC 1: I can write large powers of ten in both expanded form and index form.
\square SC 2: I can write large numbers in expanded notation.

SC 1: I can write large powers of ten in both expanded form and index form

Worked example: Writing large powers of 10 in expanded notation and index notation
(a) Write the number 1000 in both expanded form and index form.

Thinking	Working
Identify the base number.	
Write the number in expanded form. Expanded form shows the base number multiplied by itself.	
Identify the number of times the base number appears in the product.	
Write the number in index form. The index shows the number of times the base number appears in the product. This is written as a superscript.	
Write the answer.	

(b) Write the number 1000000 in both expanded form and index form.

Thinking	Working
Identify the base number.	
Write the number in expanded form. Expanded form shows the base number multiplied by itself.	
Identify the number of times the base number appears in the product.	
Write the number in index form. The index shows the number of times the base number appears in the product. This is written as a superscript.	
Write the answer.	

1 Write the following in index form with a base of 10 .
(a) 10000000
(b) 100000000
(c) 1000000000

SC 2: I can write large numbers in expanded notation

Worked example: Writing in expanded form using powers of 10

Write 8057 in expanded form using index notation.

Thinking	Working
Write the number in expanded form.	
Rewrite the expanded form by multiplying each digit by a power of 10.	
Write each power of ten in index form. Recall that $1000=10^{3}, 100=10^{2}$, $10=10^{1}$ and $10=10^{0}$.	
Write the answer.	

1 Place value is shown in the table below. Complete the table with index numbers using 10 as a base.

	Hundreds of thousands	Tens of thousands	Thousands	Hundreds	Tens	Ones
General form	100000					
Index form			10^{3}		10^{1}	10^{0}
Expanded form		$10 \times 10 \times 10 \times 10$				1

2 The number 879 is eight hundreds, seven tens and nine ones and can be written as $(8 \times 100)+(7 \times 10)+(9 \times 1)$ or in expanded form using index notation as $8 \times 10^{2}+7 \times 10^{1}+9 \times 10^{0}$

Write the following numbers in expanded form using index notation.
(a) 37
(b) 372
(c) 3702

3 Write these numbers given in expanded notation in general form (as numbers).
(a) $5 \times 10^{2}+3 \times 10^{1}+9 \times 1$
(b) $7 \times 10^{2}+5 \times 1$
(c) $2 \times 10^{2}+3 \times 10^{0}$

[^0]: Pearson acknowledges the Traditional Custodians of the lands upon which the many schools throughout Australia are located.

 We respect the living cultures of Aboriginal and Torres Strait Islander peoples and their ongoing connection to Country across lands, sky, seas, waterways and communities. We celebrate the richness of Indigenous Knowledge systems, shared with us and with schools Australia-wide.

 We pay our respects to Elders, past and present.

