SAMPLE CHAPTER

UNCORRECTED PAGE PROOFS
To learn more about the series,
visit: oup.com.au/ oxford-maths-nsw

Or book an appointment with your local sales consultant at oup.com.au/contact

SERIES CONSULTANT:
KAREN BELLAMY
HELEN SORENSON
ALEXANDER BLANKSBY
JENNIFER NOLAN
MELANIE KOETSVELD
SONJA STAMBULIC ROBERT BELL

Integers

1A Rounding and estimating
1B Adding and subtracting whole numbers
1C Multiplying and dividing whole numbers
1D Multiples, factors, indices and roots
1E Negative integers
1F Adding and subtracting integers
1G Multiplying and dividing integers
1H Order of operations

Prerequisite skills

Diagnostic pre-test
Take the diagnostic pre-test to assess your knowledge of the prerequisite skills listed below.

Interactive skillsheets
After completing the diagnostic pre-test, brush up on your knowledge of the prerequisite skills by using the interactive skillsheets
\checkmark Adding and subtracting two-digit numbers
\checkmark Times tables
\checkmark Multiplying and dividing by powers of 10
\checkmark Number lines

Curriculum links

- Compares, orders and calculates with integers to solve problems [MA4-INT-C-01]
- Multiply and divide positive and negative indices
- Apply the 4 operations to integers
- Operates with primes and roots, positive-integer and zero indices involving numerical bases and establishes the relevant index laws [MA4-IND-C-01]
- Examine cube roots and square roots
© NESA

Materials

\checkmark Calculator

1A Rounding and estimating

Learning intentions

By the end of this topic you will be able to .
\checkmark round whole numbers
\checkmark estimate results of simple calculations
$\boldsymbol{\checkmark}$ assess the accuracy of estimations.

Inter-year links
Support Place value
Year 7 1A Place value

Place value

- Place value charts can be used to determine the value of each digit in a number.

Rounding

- Rounding a number means to replace it with an approximation that is simpler and easier to use. Using rounded numbers makes calculations less accurate.
\rightarrow 'Approximately equal' is shown using the symbol ' \approx '.
- To round to the nearest thousand, place a box around the digit in the thousands place.
\rightarrow If the digit to the right of the box is equal to or greater than 5 , round up.
\rightarrow If the digit to the right of the box is less than 5 , round down.

$17300 \approx 17000$

- To round to a number's leading digit place a box around the first digit and check if the second digit is less than, equal to or greater than 5.

Leading digit

$$
\zeta_{123} 456=123456 \approx 100000
$$

Estimations

- An estimate is an approximate value which is close to the actual value. We can estimate the answers of calculations by using rounding.
For example, if 32034 people visited Bondi Beach on Christmas Day and another 29791 visited on Boxing Day, $32034+29791 \approx 32000+30000=62000$ is an estimate of the total number of visitors. The actual number of visitors is 61825 .

Example 1A. 1 Rounding a number

Write an approximation for each number by rounding to the nearest hundred.
a 17845
b 4565
c 992

THINK

a 1 Draw a box around the digit in the hundreds place.
2 Consider the digit to the right of the boxed digit. This digit is less than 5 , so do not change the boxed digit.
3 All digits to the left of the boxed digit stay the same. Replace all digits to the right of the boxed digit with a zero.

b 1 Draw a box around the digit in the hundreds place.
2 Consider the digit to the right of the boxed digit. This digit is greater than 5 , so add one to the digit in the box.
3 All digits to the left of the boxed digit stay the same. Replace all digits to the right of the boxed digit with a zero.
c 1 Draw a box around the digit in the hundreds place.
2 Consider the digit to the right of the boxed digit. This digit is greater than 5 , so add one to the digit in the box. The boxed digit changes from 9 to 10 , so write 0 in the boxed digit's place and add one to the place to the left.
3 Replace all digits to the right of the boxed digit with a zero.

17800 $17845 \approx 17800$

1000

WRTIE

a $17 \boxed{845}$
17845
b $4 \longdiv { 5 6 5 }$
$4 \longdiv { 5 6 5 }$

4600
$4565 \approx 4600$
c 992
992
$992 \approx 1000$

Example 1A. 2 Estimation by rounding

Estimate the result of each calculation by first rounding each number to its leading digit.
a $1307+4875$
b 576×42
c $45229 \div 5$

THINK

1 Round each number to its leading digit.
2 Perform the calculation.
3 Write the answer using the ' \approx ' symbol.

WRTE

$$
\begin{aligned}
& \text { a } 1307+4875 \approx 1000+5000 \\
& =6000 \\
& 1307+4875 \approx 6000 \\
& \text { b } 576 \times 42 \approx 600 \times 40 \\
& =24000 \\
& 576 \times 42 \approx 24000 \\
& \text { c } 45229 \div 5 \approx 50000 \div 5 \\
& =10000 \\
& 45229 \div 5 \approx 10000
\end{aligned}
$$

\checkmark Remember that the place of a digit in a number indicates its value.
For example, the 4 in 3452 represents 400 , not 4 .
\checkmark The digit 0 (zero) is important. It shows that there is nothing in that place value position and it keeps all other digits in the correct places.
\checkmark Be careful when rounding to a specific place value. If you place a box around the wrong digit, your answer will not be correct. Use a place value chart if you are unsure.

| Millions | Hundred
 thousands
 1000000 | Ten
 thousands
 100000 | 10000 | 1000 | Thousands | Hundreds |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Tens | Ones |
| :--- |

ANS
 p490
 Exercise 1A Rounding and estimating

```
1-6,7(a,c,e),8(1 1 , 2 2md
``` 9-11,13-15, 18
\(3-6,7(\mathrm{~b}, \mathrm{~d}, \mathrm{f}), 8\left(2^{\text {nd }}, 3^{\text {rd }}\right.\) columns \()\),
9-10(e-h), 12, 14, 16, 17, 19,20 \(3,4,6,8\) (i-l), 10, 12, 16, 17, 20-22

1 Decide whether each number is closer to 400 or 500 .
a 438
b 477
c 462
d 455
e 433
f 449

2 Decide whether each number is closer to 6000 or 7000 .
a 6789
b 6306
c 6010
d 6505
e 6880
f 6448

1A. 13 a Round each number to the nearest ten
i 482
ii 6377
iii 56026
iv 738494
v 8075
vi 904507
b Round each number in part a to the nearest hundred.
4 a Round each number to the nearest thousand.
i 36428
ii 7510
iii 183915
iv 50703
v 6052
vi 825
b Round each number in part a to the nearest hundred.
5 Round each number to its leading digit.
a 77
b 42
c 81
d 347
e 160
f 555
g 909
h 2489
i 6902
j 22117

6 Round each number to its leading digit.
a 94
b 99
c 952
d 92949
e 9008
f 960

7 Give three examples of numbers that round to each of these approximations if you round to the leading digit.
a 40
b 700
c 3000
d 50000
e 800000
f 2000000

8 Calculate:
a \(900+700\)
b \(300-10\)
c \(30 \times 20\)
d \(80 \div 4\)
e \(500 \times 40\)
f \(800+3000\)
g \(200 \div 5\)
h \(6000-500\)
i \(40000 \div 20\)
j \(7000 \times 300\)
k 20000-9000
\(15000+10000\)

1A. 29 Estimate the result of each calculation by first rounding each number to its leading digit.
a \(468+731\)
b 92-38
c \(27 \times 49\)
d \(83 \div 2\)
e \(582 \times 17\)
f \(245+6379\)
g \(4512 \div 43\)
h 137-51

10 Estimate the result of each calculation by first rounding each number to its leading digit.
a \(3694 \div 442\)
b \(187 \times 9364\)
c 7085-750
d \(964+5803\)
e \(8277 \times 65234\)
f \(13761+8036\)
g \(94113 \div 587\)
h 24905-780

11 An office building has 35782 panes of glass. Write an approximation for this number if you round to:
a the leading digit
b the nearest hundred
c the nearest thousand
d the nearest ten
e the nearest ten thousand.
12 Russia is the largest country in the world, with an area of \(17098242 \mathrm{~km}^{2}\). Round this value to:
a its leading digit
b the nearest hundred
c the nearest thousand
d the nearest ten thousand
e the nearest hundred thousand
\(f\) the nearest million.

15 Daniel is saving for a quad bike. He has saved \(\$ 60\) per month for the past 28 months.
a Write an approximation for the number of months by rounding the value to its leading digit.
b Using your answer to part \(\mathbf{a}\), estimate the amount of money Daniel has saved.
c Does he have enough money to buy the quad bike?
d If he doesn't have enough money, estimate for how many more months he needs to save.

16 Paving tiles cost \(\$ 7\) each. Antonia needs 385 tiles for her back patio.
a Write an approximation of the number of tiles Antonia needs by rounding to the leading digit.
b Estimate the cost of the tiles, using your answer to part \(\mathbf{a}\).
c Compare your estimate to the exact cost of the tiles.

17 The school fundraising committee wants to raise money by buying boxes of sunscreen from a wholesaler to sell for a profit. Each box has a wholesale price of \(\$ 47\).
a Estimate the number of boxes the committee could buy with \(\$ 2000\).
b If the committee used this estimate, without performing the exact calculation decide whether there would be money left over or money owed to the wholesaler. Explain your answer.

18 Australia has an area of \(7692024 \mathrm{~km}^{2}\) and Indonesia has an area of \(1904569 \mathrm{~km}^{2}\).
a Round each value to its leading digit.
b Use your approximations from part a to estimate:
\(\mathbf{i}\) the difference in area between the two countries
ii the area of Australia compared to the area of Indonesia.
c Check how close your estimations from part \(\mathbf{b}\) are to the exact answers.
19 People attending a State of Origin rugby league match entered the stadium through one of five gates. The number of people passing through each gate is shown.
\begin{tabular}{|l|c|c|c|c|c|}
\hline Gate & A & B & C & D & E \\
\hline Number of people & 9361 & 10758 & 12196 & 8844 & 11037 \\
\hline
\end{tabular}
a Estimate the number of people attending the match by rounding the numbers at each gate to the leading digit.
b Calculate the exact number of people attending the match.
20 Australia is the sixth largest country in the world. The areas of the states and territories (including islands) of Australia are shown on the map.
a Round each area to its leading digit.
b Estimate the area of Australia by adding up the approximate values from part \(\mathbf{a}\).
c The area of NSW, rounded to the nearest thousand, is \(801000 \mathrm{~km}^{2}\). Round each of the other areas to the nearest thousand.
d Estimate the area of Australia by adding up the approximate values from part c.
e Compare the estimates you obtained in
 parts \(\mathbf{b}\) and \(\mathbf{d}\) with the accepted value for the area of Australia of \(7692024 \mathrm{~km}^{2}\).
21 The area of Australia is \(7692024 \mathrm{~km}^{2}\) and the population at the end of 2020 was 25694393 .
a Estimate the area per person for the entire population by rounding both numbers to the leading digit.
b New Zealand has an area of \(268021 \mathrm{~km}^{2}\) and the population at the end of 2020 was 5106400 . Estimate the area per person for New Zealand by rounding both numbers to the leading digit and compare it with that for Australia.

22 Estimate the number of words you say in a day. Explain how you reached your estimate.

\section*{Check your Student obook pro for these digital resources and more:}

Place value

Interactive
skillsheet
Rounding
integers

Interactive
skillsheet Estimation by rounding

Investigation
An Australian road trip

Topic quiz
1A

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

\section*{1 B Adding and subtracting whole numbers}

\section*{Learning intentions}

By the end of this topic you will be able to ...
\(\checkmark\) use mental strategies for addition and subtraction
\(\checkmark\) use the addition and subtraction algorithms for large numbers.

Inter-year links
Support Adding whole numbers
Year 7
1B Adding whole numbers

\section*{Addition properties}
- The associative law of addition states that regardless of how the numbers are grouped in an addition, the result does not change. For example, \((3+5)+2=3+(5+2)\).
- The commutative law of addition states that the order in which numbers are added does not change the result.
For example, \(2+8=8+2\).
\begin{tabular}{|l|l|}
\hline Addition (+) & Subtraction (-) \\
\hline - Sum & - \\
- & Difference \\
- Plus & - Take away \\
- More than & - Less than \\
- Increase & - \\
- & Fewer \\
- Total & - Reduce \\
- Together & - \\
\hline
\end{tabular}

\section*{Mental strategies}
- The by-parts method involves adding the digits in each place value separately.

For example, \(123+44=100+(20+40)+(3+4)\)
\[
\begin{aligned}
& =100+60+7 \\
& =167 .
\end{aligned}
\]
- The jump method involves breaking down one of the given numbers, then adding or subtracting each part of the number in stages.

For example, \(123+44=123+40+4\)
\[
\begin{aligned}
& =163+4 \\
& =167 .
\end{aligned}
\]

- The compensation method involves rounding one number to make the calculation easier. The amount by which the number was rounded up or down is then added or subtracted.

For example, \(123-28=123-30+2\)
\[
\begin{aligned}
& =93+2 \\
& =95 .
\end{aligned}
\]

\section*{Addition algorithm}
- In the addition algorithm, start by adding the digits in the ones column, then add the digits in the tens column, then the hundreds column, and so on.

\section*{Subtraction algorithm}
- In the subtraction algorithm, start by subtracting the digits in the ones column, then subtract the digits in the tens column, then the hundreds column, and so on.
\(\rightarrow\) If the subtraction in a particular column cannot be done, take a value from the column to the left.

Ones column: \(2+6=8\)
Tens column: \(7+4=11\), carry the 10
Hundreds column: \(4+8+(1)=13\)
\(1318 \longleftarrow\) Answer

711 Ones column: Take 10 from the tens column \(381 \quad 11-5=6\)
- 145 Tens column: 7-4=3

Hundreds column: 3-1=2
\(236 \longleftarrow\) Answer

\section*{Example 1B. 1 Using mental strategies to add two numbers}

Work out each sum using the mental strategy given in brackets.
a \(282+317\) (by-parts method)
b \(51+39\) (jump method)
c \(48+68\) (compensation method)

\section*{THNK}
a 1 Add the hundreds together.
2 Add the tens together.
3 Add the ones together
4 Combine these sums for the final answer.
b 1 Choose a starting number, then break down the second number into tens and ones.
2 Add the tens to the starting number, followed by the ones.
c 1 Choose a starting number, then round the second number to the nearest 10 .
2 Add the rounded number to the starting number, then adjust for rounding.

\section*{WRITE}
a \(282+317=599\)

b \(51+39=90\)

c \(48+68=116\)

\section*{Example 1B. 2 Using the addition algorithm}

\section*{Calculate \(781+965\) using the addition algorithm: 781}
\(\begin{array}{r}+965 \\ \hline\end{array}\)

\section*{THINK}

\section*{WRITE}

1 Add the digits in the ones column: \(1+5=6\).
2 Add the digits in the tens column: \(8+6=14\).
Write 4 in the tens column of the answer and write 1 above the
\(\begin{array}{r}+965 \\ \hline 1746\end{array}\) hundreds column.
3 Add the digits in the hundreds column: \(1+7+9=17\).

\section*{Example 1B. 3 Using mental strategies to subtract two numbers}

Work out each difference using the mental strategy given in brackets.
a 112-67 (jump method)
b 200-89 (compensation method)

\section*{THINK}
a 1 Start with the first number, then break down the second number into tens and ones.
2 Subtract the tens from that number, followed by the ones.

\section*{WRITE}
a 112-67 is 45 .

b 1 Start with the first number, then round the second number to the nearest 10 .
2 Subtract the rounded number from the starting number, then adjust for rounding.
b round the second number to the
b \(200-89\) is 111 .

\section*{Example 1B. 4 Using the subtraction algorithm}

Calculate 678-93 using the subtraction algorithm: 678

\section*{THINK}

WRITE
1 Subtract the digits in the ones column: 8-3=5.
2 Subtract the digits in the tens column: 7-9.
Take 1 from the hundreds column by reducing the hundreds to 5 and increasing the tens to 17 .
Subtract the digits in the tens column: \(17-9=8\).
3 Subtract the digits in the hundreds column: 5-0 \(=5\). Recall that if there is no digit in a place then that place has a value of zero.
\(\begin{array}{r}93 \\ -\quad 9 \\ \hline\end{array}\)
585
\(\checkmark\) Don't forget that addition is commutative - reordering sums can make them a lot easier!
\(\checkmark\) Subtraction is not commutative. Unlike addition problems, you cannot change the order of the numbers in subtraction problems. You must work through subtractions from left to right.
\(\checkmark\) Make sure that your place value columns are well aligned so that you add or subtract the correct digits.
\(\checkmark\) Read each question carefully. You may find some questions easy to calculate in your head.

\section*{ANS \\ Exercise 1B Adding and subtracting whole numbers}

\footnotetext{
1-3, 4(a-c), 5(a, c), 6, 7, 8-10(b, c),
} 11, 13, 15

1a-d(ii, iii), 3(c, d), 4(d-f), 5(b, d), 1a-d(iv), 4(e, f), 5(c, d), 6a-d(iv), 9(c, d), 6a-d(ii, iii), 8-10, 12, 14, 15, 17, 18(a) 10(c, d), 12, 14-19
18.1 1 a Use the by-parts method to work out each sum.
\[
\begin{array}{llll}
\mathbf{i} & 34+63 & \text { ii } & 89+72
\end{array}
\]
iii \(654+325\) iv \(1243+9654\)
b Use the jump method to work out each sum.
i \(647+72\)
ii \(768+51\)
iii \(456+128\)
iv \(3452+139\)
c Use the compensation method to work out each sum.
i \(24+99\)
ii \(472+56\)
iii \(658+465\)
iv \(7629+475\)
d Use any mental strategy to work out each sum.
i \(87+90\)
ii \(489+650\)
iii \(8765+59\)
iv \(5983+587\)

1B. 22 Calculate each sum using the addition algorithm.
a 243
b 538
758
d 697
\(+715\)
\(+154\)
\(\begin{array}{r}+461 \\ \hline\end{array}\)
\[
+805
\]

3 Use the addition algorithm to calculate each of the following.
a \(4765+476\)
b \(7410+3065\)
c \(16239+2633\)
d \(98543+23987\)

4 Use the addition algorithm to calculate each of the following.
a \(456+280+487\)
b \(876+387+594\)
c \(986+386+2769\)
d \(56+875+3987\)
e \(6954+389+23\)
f \(7632+9520+3198\)

5 Evaluate:
a \(56871+34981\)
b \(54870+29528+43679\)
c \(5498+2873+8921+7629\)
d \(397+287+888+396+492\)
18. 36 a Use the jump method to work out each difference.
i 93-30
ii 126-39
iii \(145-51\)
iv 764-71
b Use the compensation method to work out each difference.
i 87-54
ii 763-68
iii \(874-618\)
iv \(433-67\)
c Use any mental strategy to work out each difference.
i 130-70
ii 5600-410
iii \(390-180\)
iv \(568-456\)
d Use any mental strategy to work out each problem.
i \(79+39-56\)
ii \(750+830-690\)
iii \(78+565-120\)
iv \(350-90+876\)
18.4 7 Calculate each difference using the subtraction algorithm.
a \(\begin{array}{r}438 \\ -\quad 399 \\ \hline\end{array}\)
b
\(\begin{array}{r}852 \\ -576 \\ \hline\end{array}\)
c \(\begin{array}{r}2356 \\ -\quad 976 \\ \hline\end{array}\)
d 3765
\(\begin{array}{r}-576 \\ \hline\end{array}\)
\(-387\)

8 Use the subtraction algorithm to calculate each of the following.
a 487-458
b 3865-376
c 4652-234
d 6798-478

9 Use the subtraction algorithm to calculate each of the following.
a 7654-488
b 7421-6423
c 75 638-689
d 86 408-42766

10 Calculate:
a \(566+238-328\)
b \(2776+5409-3111\)
c \(76409+45629-83888\)
d \(6543-2389+4319\)

11 Yiyan is the manager of five city car parks. The capacities of the car parks are \(356,821,489,398\) and 450 cars. What is the total number of cars that can use Yiyan's car parks?

12 At the 2021 Census the population of NSW was 8072163 and the population of Greater Sydney was 5231147.
a How many people from NSW live outside Greater Sydney?
b How much does the population of Greater Sydney have to grow for it to become 6000000 ?
c If the population of Greater Sydney decreases by 32000 in 2022 and increases by 59000 in 2023, what will the population be at the end of 2023?

13 Two local libraries decide to merge their book collections to form a mega-library. Spring Hill Library has 27356 books and Dove St Library has 54237 books.
a How many books are there in total?
b The mega-library finds that there are two copies of 8345 books so it is decided one copy of each will be given away. After the giveaway, how many books will there be in the new library?

14 Raf and Mac go on a road trip around NSW. They combine expenses for the trip and Raf keeps a tally of the distances they travel and the money they spend.
\begin{tabular}{|l|c|c|c|}
\hline Stage & \begin{tabular}{c}
Distance travelled \\
\((\mathbf{k m})\)
\end{tabular} & \begin{tabular}{c}
Accommodation \\
\((\mathbf{2}\) nights)
\end{tabular} & \begin{tabular}{c}
Expenses (petrol, \\
food, etc.)
\end{tabular} \\
\hline Sydney to Bathurst & 201 & \(\$ 292\) & \(\$ 128\) \\
\hline Bathurst to Gilgandra & 262 & \(\$ 320\) & \(\$ 175\) \\
\hline Gilgandra to Narrabri & 187 & \(\$ 228\) & \(\$ 184\) \\
\hline Narrabri to Muswellbrook & 276 & \(\$ 248\) & \(\$ 162\) \\
\hline Muswellbrook to Sydney & 251 & \(\$ 0\) & \(\$ 85\) \\
\hline
\end{tabular}
a What was the total distance Raf and Mac travelled on their road trip?
b How much in total did they spend on accommodation?
c What were their total expenses not including accommodation?
d Raf and Mac had each saved up \(\$ 1000\) for the trip. How much was left over when they got back to Sydney?

15 Aya has 2437 subscribers to her YouTube channel and Akuac has 3762 subscribers．
a What is the total number of subscribers between the two girls？
b Aya and Akuac decide to combine their channels into one new channel，thus combining their subscribers． If there are 1562 people who initially subscribed to both channels，how many subscribers will the new combined channel have？（Assuming channels can be merged and subscribers can＇t be counted twice．）

16 The Six Foot Track goes from Katoomba to Jenolan Caves through the Blue Mountains National Park．Jai and Rudra walk the track over 3 days in the summer．They walk the following distances： \(15 \mathrm{~km}, 19 \mathrm{~km}\) and 10 km ． a How long is the Six Foot Track？

Katoomba is 1017 m above sea level and Jenolan Caves are 828 m above sea level．
b What is the difference in height between the two locations？

17 Shannon＇s shoe store has enough space for 568 pairs of shoes．If Shannon has 483 pairs of shoes in her store， how many does she need to order to be at full capacity？

18 a What is the difference between the sum of the first five odd numbers（starting from 1 ）and the sum of the first five even numbers（starting from 2）？
b What is the difference between the sum of the first 2000 odd numbers（starting from 1）and the first 2000 even numbers（starting from 2）？

19 A cryptarithm is a type of mathematical puzzle in which numbers have been replaced by letters．There are six solutions to the cryptarithm below．How many of them can you find？
\[
\begin{array}{r}
\text { SEED } \\
+ \text { WATER } \\
\hline \text { FRUIT }
\end{array}
\]

\section*{Check your Student obook pro for these digital resources and more：}

Investigation
whole numbers

\section*{1C Multiplying and dividing whole numbers}

\section*{Learning intentions}

By the end of this topic you will be able to ...
\(\checkmark\) use mental strategies for multiplication
\(\checkmark\) calculate products and quotients using the multiplication and division algorithms.

Inter-year links
Support Multiplying whole numbers
Year 7 1D Multiplying whole numbers

\section*{Multiplication}
- Repeated addition can be reduced to multiplication of factors to give a product.

\section*{Multiplication strategies}
- The associative law of multiplication states that regardless of how the numbers are grouped, the result of a multiplication does not change.

For example, \((2 \times 4) \times 6=2 \times(4 \times 6)\).
- The commutative law of multiplication states that the order in which numbers are multiplied does not change the results.

For example, \(112 \times 4=4 \times 112\).
- The distributive law states that multiplication can be 'distributed' across a bracket. This means that large numbers can be broken down into a sum of smaller numbers, each of which can then be multiplied separately.
For example,
\[
\begin{aligned}
5 \times 32 & =5 \times(30+2) \\
& =5 \times 30+5 \times 2 \\
& =150+10 \\
& =160
\end{aligned}
\]

\section*{Multiplication algorithm}
- When two numbers are multiplied, the first number is multiplied by the individual digits of the second number, considering the place values of the digits, then the products are added together.

\section*{Division}
- When performing a division, the dividend is the number that is being divided by another number.
- The divisor is the number by which the dividend is divided.
- The quotient is the whole-number result of the division.
- The remainder is the part of the dividend that is left over when the number is divided by the divisor. The remainder can be zero.

\section*{Short division}
- Short division is an algorithm used to simplify a division problem by breaking it down into easy steps.
- Start by dividing the first digit of the dividend by the divisor.

\section*{Example 1C.1 Using strategies to multiply numbers}

Work out each product using the multiplication strategy given in brackets.
a \(9 \times 34\) (distributive law)

\section*{THINK}
a 1 Break down the second number into tens and ones.

2 Multiply each part of the second number by the first number.
3 Add the results together.
b 1 Use brackets to group pairs of numbers that are easy to multiply together and/or produce round numbers.
2 Multiply the numbers grouped in the brackets.

3 Multiply the result by the third number.
b \(12 \times 4 \times 2\) (associative law)

\section*{WRITE}
a \(9 \times 34=9 \times(30+4)\)
\[
\begin{aligned}
& =9 \times 30+9 \times 4 \\
& =270+36 \\
& =306
\end{aligned}
\]
b \(12 \times 4 \times 2=12 \times(4 \times 2)\)
\[
=12 \times 8
\]
\[
=96
\]

\section*{Example 1C. 2 Using the multiplication algorithm}

\section*{Calculate the product using the multiplication algorithm: 359}

\section*{THINK}

1 Set out the multiplication problem by lining up the digits according to their place value.

2 Multiply the first number by the ones of the second number: 359 by \(2(359 \times 2=718)\).
3 Multiply the first number by the tens of the second number: 359 by 70 (\(359 \times 70=25130\)) .
4 Add the products and write the final answer at the bottom of the calculation.

\section*{WRITE}

46
359
\begin{tabular}{l}
\(\times \quad 72\) \\
\hline
\end{tabular}
\begin{tabular}{rl}
718 & \((359 \times 2)\) \\
+25130 & \((359 \times 70)\) \\
\hline 25848 &
\end{tabular}
\(359 \times 72=25848\)

\section*{Example 1C. 3 Using short division}

Use short division to calculate the quotient and remainder of \(1257 \div 8\).

\section*{THINK}

1 Set up the problem using the division algorithm. The divisor is 8 and the dividend is 1257 .

2 How many 8s go into 1 ? Write a zero above the 1 .

3 How many 8s go into 12 ? Write 1 above the 2 on the quotient line. Put the remainder 4 in front of the next digit, 5 .
4 How many 8 s go into 45? Write a 5 above the 5. Put the remainder 5 in front of the next digit, 7.

5 How many 8s go into 57? Write 7 above the 7 on the quotient line. Work out the remainder. \(7 \times 8=56\), so the remainder is \(57-56=1\).

\section*{WRITE}

0157 remainder 1
\(8 \longdiv { 1 2 ^ { 4 } 5 ^ { 5 } 7 }\) \(1257 \div 8=157\) remainder 1

Helpful hints
\(\checkmark\) When using the distributive law, don't forget to maintain place values using zeroes.
For example, \(32 \times 3=(30 \times 3)+(2 \times 3)\)
\[
32 \times 3 \neq(3 \times 3)+(2 \times 3)
\]
\(\checkmark\) Carefully line up digits by place value when setting up long multiplication problems to avoid making errors when adding the products together.
\(\checkmark\) Remember that division goes from left to right.

1c. 11 Use the distributive law to calculate:
a \(3 \times 42\)
b \(6 \times 102\)
c \(203 \times 7\)
d \(305 \times 9\)
e \(17 \times 98\)
f \(83 \times 99\)
g \(24 \times 95\)
h \(41 \times 19\)
i \(62 \times 101\)
j \(29 \times 1001\)
k \(11 \times 97\)
\(115 \times 999\)

2 Use mental strategies to calculate:
a \(17 \times 8 \times 3\)
b \(21 \times 5 \times 6\)
c \(3 \times 74 \times 2\)
d \(66 \times 8 \times 10\)
e \(4 \times 6 \times 25\)
f \(921 \times 5 \times 20\)
g \(35 \times 4 \times 5\)
h \(29 \times 250 \times 4\)
i \(200 \times 186 \times 5\)

3 Find each product.
a \(9 \times 70\)
b \(12 \times 800\)
e \(356 \times 900\)
f \(2765 \times 3000\)
c \(11 \times 700\)
g \(2763 \times 9000\)
d \(126 \times 50\)
h \(1674 \times 50000\)

4 Find each product.
a \(60 \times 40 \times 300\)
b \(80 \times 700 \times 8000\)
c \(2400 \times 20 \times 200\)
d \(15000 \times 500 \times 50\)
c. 25 Multiply the following pairs of numbers using the multiplication algorithm.
a \(589 \times 76\)
b \(498 \times 49\)
d \(4623 \times 32\)
e \(9245 \times 72\)
c \(4598 \times 23\)
f \(9430 \times 520\)

6 Multiply the following pairs of numbers using the multiplication algorithm.
a \(387 \times 860\)
b \(378 \times 598\)
c \(638 \times 496\)
d \(3769 \times 458\)
e \(4287 \times 352\)
f \(5923 \times 5030\)

7 a Estimate these products by first rounding each number to its leading digit, then multiplying.
i \(8462 \times 95\)
ii \(3299 \times 87\)
iii \(95687 \times 625\)
iv \(78438 \times 8345\)
b Check how close your estimations are to the exact results by performing the calculations.
1 c .38 Use short division to calculate each quotient and remainder.
a \(8 \longdiv { 4 6 3 }\)
b \(6 \longdiv { 3 4 8 }\)
c \(7 \longdiv { 1 6 0 }\)
d \(5 \longdiv { 3 7 5 }\)
e \(9 \longdiv { 6 8 9 }\)
f \(4 \longdiv { 5 6 8 2 }\)

9 Use short division to calculate each quotient and remainder.
a \(5824 \div 4\)
b \(8399 \div 6\)
c \(4210 \div 3\)
d \(84276 \div 5\)
e \(56289 \div 9\)
f \(1489 \div 7\)

10 Perform each division using short division.
a \(\frac{143}{6}\)
b \(\frac{653}{8}\)
c \(\frac{246}{7}\)
d \(\frac{489}{3}\)

11 The average of a set of scores is the total sum of the scores divided by the number of scores. For example, the average of 25,30 and 23 is \((25+30+23) \div 3\) or \(\frac{25+30+23}{3}\).
a Find the sum of 19, 22, 24 and 27.
b Divide your answer from part a by 4 to find the average of 19, 22, 24 and 27.

12 a The commutative law relates to the order of operations. Calculate:
i \(3+6\)
ii \(6+3\)
b Does the order matter when you add two numbers? Try two more examples.
c Does subtraction obey the commutative law? Try these calculations.
i 6-3
ii 3-6
d Does multiplication obey the commutative law? Try these.
i \(6 \times 3\)
ii \(3 \times 6\)
e Does division obey the commutative law? Try these.
i \(6 \div 3\)
ii \(3 \div 6\)
13 a The associative law also relates to addition. Calculate:
i \((5+6)+7\)
ii \(5+(6+7)\)
iii \((5+7)+6\)
b Does it matter in which order you add three numbers? Try two more examples.
c Do subtraction, multiplication and division obey the associative law? Try some examples to help you decide.
14 The commutative and associative laws can make mental calculations easier.
a To calculate \(54+118+16\), you can add any two of the numbers together first.
i Which two numbers are easiest to add together first? Explain.
ii Perform the calculation.
b To calculate \(87 \times 25 \times 4\), you can multiply any two of the numbers together first.
i Which two numbers are easiest to multiply together first? Explain.
ii Perform the calculation.
c Explain how these laws can make some calculations easier to perform.
15 a Calculate these, then compare your answers.
i \(\quad 4 \times(5+6)\)
ii \(4 \times 5+4 \times 6\)
b Calculate these, then compare your answers.
i \(6 \times(10-2)\)
ii \(6 \times 10-6 \times 2\)
c Parts \(\mathbf{a}\) and \(\mathbf{b}\) are examples of the application of the distributive law. Describe this law.
d Show how the distributive law works by providing two more examples.
16 The distributive law can be used to make some multiplication calculations easier to perform.
a The calculation \(16 \times 24\) can be written as \(16 \times(20+4)\) or \(16 \times 20+16 \times 4\).
i Calculate \(16 \times 20\).
ii Calculate \(16 \times 4\).
iii Add your results and write the answer to \(16 \times 24\).
b The calculation \(45 \times 998\) can be written as \(45 \times(1000-2)\) or \(45 \times 1000-45 \times 2\).
i Calculate \(45 \times 1000\).
ii Calculate \(45 \times 2\).
iii Subtract your results and write the answer to \(45 \times 998\).
c Explain how the distributive law can be used to make some multiplication calculations easier to perform.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

17 Ms Lee spends \(\$ 480\) per school year on coffee from The Blue Cup Café．
a If the school year is 40 weeks，how much does Ms Lee spend per week？
b If The Blue Cup Café has a special teacher price of \(\$ 4\) per cup，how many times per week does Ms Lee buy coffee？
Mr Lin prefers the cheaper coffee at the service station over the road．He pays \(\$ 2\) per cup and buys coffee five days per week．
c How much does Mr Lin pay for coffee in one week？
d How much does Mr Lin pay for coffee in a school year？

18 The Year 8 class captains are tasked with providing icy poles for the whole school at the swimming sports carnival．There are 1289 students at the school．
a How many packs of icy poles do the class captains have to buy if there are 20 in each pack，so that no student misses out？
b How many icy poles will be left over if every student has one？
c If the packs of icy poles cost \(\$ 3\) each，how much money do the class captains need？
19 Astrid is planning to hire a car for a road trip from Sydney to Cairns．The distance she plans to travel is 2422 km ．The car hire company informs Astrid that the car can travel an average of 7 kilometres per litre of fuel．
a Use this information to calculate how many litres of fuel Astrid will need to complete her journey．
b If Astrid＇s fuel tank is 50 litres，how many full tanks of fuel will she need for her journey？
c Astrid wants to make sure she overestimates the amount of money she will need to spend on fuel，so she rounds the price of fuel up to \(\$ 2\) per litre．Using this estimate，how much money should Astrid budget for her fuel expenses？
20 Darcy makes a number of mini spring rolls．After eating one， she gives half the remainder to her sister．After eating another spring roll，she gives half of what is left to her brother．Darcy now has only five spring rolls left．How many did she start with？

21 A recipe for eight biscuits requires 20 g butter， 30 g sugar and 40 g rolled oats．
a How many grams of sugar do I need if I want to make 16 biscuits？
b How many biscuits can I make if I have 140 g butter， 150 g sugar and 160 g rolled oats？

Check your Student obook pro for these digital resources and more：
pro

Investigation
Factorials

\section*{1 D Multiples, factors, indices and roots}

\section*{Learning intentions}

By the end of this topic you will be able to ...
\(\checkmark\) find the lowest common multiple and highest common factor of two numbers

Inter-year links
Support Multiples and factors
Year 7 2C Multiples and the lowest common multiple
\(\checkmark\) evaluate squares and cubes of numbers
\(\checkmark\) evaluate square roots and cube roots.

\section*{Multiples}
- The multiples of a whole number are the numbers produced by multiplying that number by another whole number.
For example, some multiples of 3 are:
\[
\begin{aligned}
& 3 \times 1=3 \\
& 3 \times 2=6 \\
& 3 \times 3=9
\end{aligned}
\]
- The lowest common multiple (LCM) of two or more numbers is the common multiple of the numbers with the smallest value.

Multiples of 4: 4, 8, (12) 16,
Multiples of 6: 6, 12, \(18,24, \ldots\) LCM: 12

\section*{Factors}
- The factors of a whole number are the whole numbers which divide exactly into that number.

For example, the factors of 12 are 1,2,3, 4, 6 and 12.
- The divisibility rules are helpful when looking for factors of large numbers.
\begin{tabular}{|c|c|c|}
\hline The last digit of the number is even. & \begin{tabular}{l}
\[
\div 3
\] \\
The sum of all the digits in the number is divisible by 3 .
\end{tabular} & \begin{tabular}{l}
\[
\div 4
\] \\
The number made by the last two digits is divisible by 4 .
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\div 5
\] \\
The last digit is
\[
5 \text { or } 0 .
\]
\end{tabular} & \begin{tabular}{l}
\[
\div 6
\] \\
The number is divisible by 2 and 3 .
\end{tabular} & \begin{tabular}{l}
\[
\div 7
\] \\
There is no easy trick for 7 .
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\div 8
\] \\
The number made by the last three digits is divisible by 8 .
\end{tabular} & \begin{tabular}{l}
\[
\div 9
\] \\
The sum of all the digits in the number is divisible by 9 .
\end{tabular} & \begin{tabular}{l}
\[
\div 10
\] \\
The last digit is 0 .
\end{tabular} \\
\hline
\end{tabular}
- The highest common factor (HCF) of two or more whole numbers is the common factor of the numbers with the greatest value.

Factors of 12: 1, 2, 3, 4,6, 12
Factors of 18: 1, 2, 3, 6, 9, 18
HCF: 6

\section*{Indices}
- Repeated multiplications can be represented using indices.

\begin{tabular}{lll}
index & expanded & basic \\
form & form & numeral
\end{tabular}
- The base is the number that is repeatedly multiplied.
- The index (or exponent) represents the number of times the base appears in expanded form.

\section*{Squares, cubes and roots}
- The square of a number is the result of multiplying that number by itself. Squaring a number is the same as raising it to a power (or index) of 2 and is indicated by a superscript 2 .
For example, \(5^{2}=5 \times 5=25\).
- The square root of a number is the number that when squared results in the original number. Square roots are indicated using the symbol \(\sqrt{ }\).
For example, \(\sqrt{9}=3\) because \(3^{2}=3 \times 3=9\)
- For positive numbers, there is an inverse relationship between squares and square roots. This means that if \(8^{2}=64\), then \(\sqrt{64}=8\).
- The cube of a number is the result of multiplying that number by itself twice. Cubing a number is the same as raising it to a power (or index) of 3 and is indicated by a superscript 3 .
For example, \(4^{3}=4 \times 4 \times 4=64\).
- The cube root of a number is the number that when cubed results in the original number. Cube roots are indicated using the symbol \(\sqrt[3]{ }\)
For example, \(\sqrt[3]{8}=2\) because \(2^{3}=2 \times 2 \times 2=8\).
- There is an inverse relationship between cubes and cube roots. This means that if \(5^{3}=125\), then \(\sqrt[3]{125}=5\).
- When multiplying a number by a square or cube root, we can write the number in front of the root without using a multiplication sign.
For example, \(5 \sqrt{9}\) means the same as \(5 \times \sqrt{9}\).
Squares Cubes

\section*{Example 1D. 1 Finding the LCM and HCF}

Determine:
a the LCM of 14 and 35

\section*{THINK}
a 1 List the multiples of 14 and the multiples of 35 .
2 Draw a box around the multiple with the lowest value that appears in both lists (the LCM).
b 1 List all the factors of 24 and all the factors of 38 .
2 Draw a box around the factor with the highest value that appears in both lists (the HCF).
b the HCF of 24 and 38.

\section*{WRITE}
a Multiples of 14: 14, 28, 42, 56, 70, ...
Multiples of 35: 35, 70, 105, 140, ...
The LCM is 70 .
b Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
Factors of 38: 1, 2, 19, 38
The HCF is 2 .

\section*{Example 1D. 2 Calculating the square and cube}

\section*{Calculate:}
a the square of 5

\section*{THINK}

1 To 'square' 5, raise 5 to the power of 2 . To 'cube' 5 , raise 5 to the power of 3 .
b the cube of 5 .

WRITE
a \(\quad 5^{2}=5 \times 5\)
\(=25\)
b \(5^{3}=5 \times 5 \times 5\)
\(=(5 \times 5) \times 5\)
\(=25 \times 5\)
\(=125\)

3 Perform the multiplication.

\section*{Example 1D. 3 Calculating the square root and cube root}

Calculate the value of each of the following roots.
a \(\sqrt{36}\)
b \(\sqrt[3]{64}\)

\section*{THINK}
a Use times tables to determine which number, multiplied by itself, is equal to the number under the square root symbol.
b Use times tables and estimation to determine which number, multiplied by itself three times, is equal to the number under the cube root symbol.

\section*{WRITE}
a \(6 \times 6=36\)
\[
\text { So, } \sqrt{36}=6
\]
b \(4^{3}=4 \times 4 \times 4\)
\[
=(4 \times 4) \times 4
\]
\[
=16 \times 4
\]
\[
=64
\]

So, \(\sqrt[3]{64}=4\)
\(\checkmark\) Lowest common multiples are not necessarily 'low' in value; they can be large numbers.
\(\checkmark\) There is no such thing as a 'highest common multiple', as any given number has infinitely many multiples.
\(\checkmark\) Make sure you use a systematic method for finding all the factors; it is very easy to miss one or two.
\(\checkmark\) Don't confuse indices and multiplication!
For example, \(2^{3}=2 \times 2 \times 2\)
\[
2^{3} \neq 2 \times 3
\]

Place your indices carefully; they should be in smaller font than the base and sit high up on the shoulder of the base - your \(4^{3}\) should look different to your 43 !

\title{
ANS \\ \\ Exercise 1D Multiples, factors, indices and roots
} \\ \\ Exercise 1D Multiples, factors, indices and roots
}

1 a List the multiples of 6 and 9 up to 100 .
b Identify the common multiples of 6 and 9 in the lists from part a.
c What is the lowest common multiple (LCM) of 6 and 9?
1D. 12 Find the lowest common multiple (LCM) of each pair of numbers.
a 6 and 8
b 12 and 18
c 25 and 30
d 12 and 15
e 14 and 20
f 9 and 15

3 Find the lowest common multiple (LCM) of each group of numbers.
a 5, 6 and 7
b 5, 7 and 9
c 6,8 and 9
d 5, 8 and 12
e 15,18 and 24
f 9,18 and 27

4 Find all the factors of each number.
a 45
b 72
c 90
d 120
e 100
f 144

5 a What is the highest common factor (HCF) of 18 and 36 ?
b What is the HCF of 21 and 45?
c What is the HCF of 12 and 30?
6 Find the highest common factor (HCF) of each group of numbers.
a 42 and 70
b 48 and 84
c 36 and 63
d 144,180 and 200
e 120, 240 and 360
f 500,900 and 725

7 Find the LCM and the HCF of each group of numbers.
a 24 and 45
b 16 and 36
c 6,15 and 20
d 7, 12 and 22

1 D. 28 Calculate the square and the cube of each of the following numbers.
a 3
b 2
c 10
d 7
e 6
f 12
g 8
h 4
i 1
j 9
k 11
114

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

9 Calculate the value of each of the following roots.
a \(\sqrt{9}\)
b \(\sqrt[3]{8}\)
c \(\sqrt[3]{125}\)
d \(\sqrt{64}\)
e \(\sqrt{81}\)
f \(\sqrt[3]{216}\)
g \(\sqrt{100}\)
h \(\sqrt[3]{343}\)
i \(\sqrt[3]{512}\)
j \(\sqrt[3]{2197}\)
k \(\sqrt{196}\)
\(1 \sqrt[3]{3375}\)

10 Find the value of each of the following by first evaluating any indices and roots.
a \(2^{3} \times \sqrt{9}\)
b \(3^{3}+\sqrt{36}\)
c \(7^{2} \times 10^{3}\)
d \(4^{3} \div \sqrt{16}\)
e \(2^{6} \times 8^{2}\)
f \(100^{2} \times \sqrt{100}\)

11 Find the value of each of the following by first evaluating any indices and roots.
a \(6^{2} \times 3^{3}\)
b \(18^{2} \div 3^{2}\)
c \(36^{2} \div 6^{3}\)
d \(4^{5} \times 2^{1}\)
e \(12^{2} \times 4^{2} \div 3^{2}\)
f \(\sqrt{81} \times 2^{4} \times 5^{2}\)

12 When a square or cube root is multiplied by a number, we can write the number in front of the root without a multiplication sign. For example, \(7 \sqrt{36}=7 \times \sqrt{36}\).

Calculate the following by first evaluating the roots.
a \(7 \sqrt{9}\)
b \(6 \sqrt{100}\)
c \(5 \sqrt[3]{27}\)
d \(7 \sqrt[3]{125}\)

13 a Find the value of \(\sqrt[3]{64}\).
b Find the value of \(3 \sqrt{64}\).
c Explain the difference between \(\sqrt[3]{64}\) and \(3 \sqrt{64}\).
14 Sally and Jo have the same number of stickers. Sally's stickers are in packs of 15 and Jo's stickers are in packs of 12 . What is the smallest number of stickers each of them could have?

15 Taran is a florist. He receives a delivery of roses that can be divided into bouquets of 15 or 24 .
a What is the smallest number of roses in the delivery?
b Taran has 24 roses and 40 lilies. If he wants to make identical bouquets with no flowers left over, what is the
 greatest number of bouquets he can make?
16 A group of students is going on an excursion to Australia Zoo. The students can travel on either buses that seat 30 or buses that seat 45 with all seats being occupied. What is the smallest number of students going on the excursion?

17 Dizzy sold an equal numbers of wontons and dumplings today. Wontons are sold in packets of 8 while dumplings are sold in packets of 12 . What is the smallest number of each that Dizzy sold?

18 Arvin has 24 toy trucks and 64 toy cars. He divides them into identical groups so that there are no toys left over. What is the largest number of groups there might be?

19 Jill has grown three types of potatoes in her garden: Pontiac, Sebago and Desiree. Seven Pontiac potatoes weigh the same as four Sebago potatoes and five Sebago potatoes weigh the same as six Desiree potatoes. Put the potatoes in order of weight from lightest to heaviest.

20 How many numbers in the set \(\left\{7^{1}, 7^{2}, 7^{3}, 7^{4}, \ldots, 7^{2000}\right\}\) have a last digit of 3 ?

\section*{Check your Student obook pro for these digital resources and more:}

1A 1 Round each number to the nearest hundred.
a 576
b 934
c 7871
d 2839
e 45621
f 76618

1A 2 Estimate the result of each calculation by first rounding each number to its leading digit.
a \(849+381\)
b 56-18
c \(65 \times 43\)
d \(582 \div 16\)
e \(493 \times 28\)
f \(825+9114\)
g \(8402 \div 79\)
h 658-180

18 3 Calculate each of the following.
a \(64+98\)
b \(745+832\)
c \(6982+5176\)
d \(28+743+6287\)
e \(6287+341+89\)
f \(3916+5328+6124\)

IB 4 Calculate each of the following.
a 63-45
b 582-96
c 846-757
d 5723-68
e 8743-374
f \(7398-3572\)

1B 5 Calculate each of the following.
a 68-34+287
c \(5921+4827-4277\)
b \(738+296-457\)
\(83422+82113-57329\)

1c 6 Calculate each of the following.
a \(768 \times 43\)
b \(846 \times 76\)
c \(6214 \times 57\)
d \(9262 \times 83\)
e \(7248 \times 82\)
f \(6524 \times 645\)

1c 7 Use short division to calculate each quotient and remainder.
a \(395 \div 4\)
b \(646 \div 7\)
c \(8328 \div 5\)
d \(76398 \div 9\)
e \(68341 \div 11\)
f \(653789 \div 6\)

1D 8 Find the lowest common multiple (LCM) of each pair of numbers.
a 7 and 6
b 4 and 9
c 5 and 12
d 30 and 45
e 18 and 24
f 36 and 54

1D 9 Find the highest common factor (HCF) of each pair of numbers.
a 24 and 30
b 27 and 72
c 45 and 75
d 120 and 185
e 450 and 600
f 288 and 432

1D 10 Find the value of each of the following by first evaluating any indices and roots.
a \(6^{2}+4^{3}\)
b \(9^{2} \div 3^{2}\)
c \(\sqrt{81} \times 4^{2}\)
d \(2^{6} \div 8\)
e \(12^{2}+6^{2} \div 3^{2}\)
f \(\sqrt{49} \times 3^{3}+8^{2}\)

\section*{1E Negative integers}

\section*{Learning intentions}

By the end of this topic you will be able to ...
\(\checkmark\) compare the value of positive and negative numbers
\(\boldsymbol{\checkmark}\) use negative numbers to represent real-life situations.

Inter-year links
Support Negative numbers
Year 7 5A Negative numbers

\section*{Integers}
- The set of integers includes all positive whole numbers, negative whole numbers and zero.
- Negative integers are less than zero in value and are preceded by a negative sign, - , placed directly before the first digit.
- Positive integers are greater than zero in value and can be represented by using a positive sign, +. The positive sign can also be left out.

- In the real world, negative numbers are used to represent quantities that lie on a scale that goes below zero. A sign is used to indicate the direction relative to the reference point of zero. For example, a negative temperature indicates that the temperature has dropped below the reference point of \(0^{\circ}\).

\section*{Ordering numbers}
- Numbers are in ascending order when they are arranged in order of increasing value.
- Numbers are in descending order when they are arranged in order of decreasing value.

- 'Less than' is shown using the symbol ' \(<\) '.
- 'Greater than' is shown using the symbol ' \(>\) '.
- 'Equal to' is shown using the symbol ' \(=\) '.

\section*{Example 1E. 1 Identifying the greater of two integers}

Identify which integer is greater in each pair of numbers. Use the following number line to help you.
a - 5 and 2
b \(\quad-4\) and -7
\(\begin{array}{lllllllllllllllllllllllll} & & & & \\ -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)

\section*{THNK}
a 1 Locate the two numbers on the number line and compare their positions. 2 is to the right of -5 , so 2 is greater than -5 .
2 Use the 'greater than' symbol, >, in your answer.
b 1 Locate the two numbers on the number line and compare their positions. -4 is to the right of -7 , so -4 is greater than -7 .
2 Use the 'greater than' symbol, >, in your answer.

\section*{WRITE}
a

\section*{Example 1E. 2 Representing a situation with an integer}

Provide an integer to represent each situation.
a The temperature is 15 degrees above zero.
b A fish swims 4 m below the surface of the water.
c Your bank account is overdrawn by \(\$ 30\).

\section*{THINK}
a 1 The reference point is \(0^{\circ}\).
2 Determine the sign of the integer based on the number's position relative to the reference point. '15 degrees above zero' can be indicated using 15 .
b 1 The reference point is the water surface.
2 Determine the sign of the integer based on the number's position relative to the reference point. ' 4 m below' can be indicated using -4.
c 1 The reference point is \(\$ 0\).
2 Determine the sign of the integer based on the number's position relative to the reference point. 'Overdrawn by \(\$ 30\) ' can be indicated using -30 .

WRITE
a 15
b \(\quad-4\)

The negative equivalent of a positive number is called the additive inverse.
For example, -4 is the additive inverse of 4 .
\(\checkmark\) Don't get your 'greater than' and 'less than' symbols mixed up! The 'mouth' of the symbol is always trying to 'eat' the greater number.
For example, \(4>3\) and \(3<4\).

\section*{Exercise 1E Negative integers}

1-5, 6(a-f), 7(a, c), 8(a, c), 9,
4, 5, 6(g-l), 7(b, d), 8(b, d), 9,
10(e-h), 12-15
6(g-l), 7(c, d), 8(c, d), 9, 10(e-h), 13-17

1 For the numbers shown in the following number line, write: \(\mathbf{a}\) all the negative integers \(\quad \mathbf{b}\) all the positive integers \(\mathbf{c}\) the integer that is neither positive nor negative.

1E. 12 Which integer is greater in each pair of numbers?
a 3 and 9
b 0 and 5
c \(\quad-7\) and 1
d 5 and -8
e 0 and -2
f -6 and -4

3 Which integer is smaller in each pair of numbers?
a 5 and 6
b 0 and 3
c \(\quad-2\) and 7
d 4 and -5
e 0 and -1
f -8 and -9

4 Which number is greater in each pair of numbers?
a 0 and -38
b -42 and 24
c \(\quad 14\) and -16
d 125 and -50
e -25 and -35
f -14 and 0

5 Which number is smaller in each pair of numbers?
a 7 and -70
b -21 and -12
c 55 and -68
d -40 and -50
e -354 and -345
f 450 and -450

6 Complete each number statement by writing < (is less than) or \(>\) (is greater than) in the space provided. You can draw a number line to help you think.
a \(-3 \ldots 2\)
b -8 \(\qquad\) \(-4\)
c 0 \(\qquad\) \(-1\)
d 9 \(\qquad\) -9
e -3 \(\qquad\) \(-5\)
f -7 \(\qquad\) \(-2\)
g 4 \(\qquad\) \(-6\)
h 5 \(\qquad\) \(-12\)
j \(-18 _-8\)
k -6 \(\qquad\) \(-7\)
i 6 \(\qquad\) -4
\(1 \quad-8\) \(\qquad\)

7 Write each list of integers in ascending order.
a \(14,-20,10,-7,8,-11,-12\)
b \(-33,42,-19,-41,0,6,29\)
c \(-8,-88,68,8,-28,-18,-48\)
d \(73,-82,3,-140,104,145,-126\)

8 Write each list of numbers in descending order.
a \(-15,71,-27,-10,4,-9\)
b \(-1,-2,5,10,-11,-5\)
c \(0,5,-9,-14,21,-19\)
d \(-11,51,-71,-62,71,12,-72\)

9 List all the integers between -7 and +4 ('between' means -7 and +4 are not included).
1E. 210 Provide an integer to represent each situation.
a The lift stops at the third floor below the ground floor.
b You have \(\$ 2174\) in the bank.
c The temperature inside a freezer is 18 degrees below zero.
d The shoreline of the Dead Sea, Jordan, is 408 m below sea level.
e The top of Mt Kilimanjaro, Tanzania, is 5895 m above sea level.
f A skydiver is 500 m above the ground.
g Your bank account is overdrawn by \(\$ 46\).
h A submarine is 40 m below sea level.

11 Polar bears live close to the edge of sea ice in the Arctic, where in winter the temperatures range from around \(-45^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\). In summer, the temperatures range from \(-10^{\circ} \mathrm{C}\) to \(10^{\circ} \mathrm{C}\). The ocean temperature is about \(-2^{\circ} \mathrm{C}\).
a Show \(-45^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C},-10^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}\) and \(-2^{\circ} \mathrm{C}\) on a number line.
b Is \(-10^{\circ} \mathrm{C}\) higher or lower than \(-45^{\circ} \mathrm{C}\) ?
c Write the five temperatures in order from lowest to highest.
d A polar bear dips her paw into the water to catch a fish. On a day with an air temperature of \(-18^{\circ} \mathrm{C}\), does the water feel warmer or colder than the air?
12 Automatic teller machines (ATMs) allow you to deposit and withdraw money from your bank account.
a Ashwan checks his bank balance and sees he has \(\$ 86\) in his account. Write this as a positive integer.
b The bank allows Ashwan's account to be overdrawn. This means that he can withdraw more money than he actually has in his account. If he withdraws \(\$ 100\) at an ATM, how much does he owe the bank?

c Write his new bank balance as a negative integer.
13 Jasmine needs glasses for reading as she is long sighted (hypermetropic). The prescription for the lenses in her glasses is +2.50 . Alex wears contact lenses because he is short sighted (myopic). His lenses have prescriptions of -3.50 for his left eye and -4.25 for his weaker right eye.
a If Justin has a prescription of +1.75 , is he long or short sighted?
b If Elle has a prescription of -4.75 , is she long or short sighted?
c How does Elle's prescription compare to Alex's? Who has weaker vision?
d What do you think the reference of zero means in this situation?

14 Bank statements usually show a transaction as a positive number if an amount is added or credited to the account, or as a negative number for withdrawals or debits.

Use the following bank statement to answer these questions.
\begin{tabular}{|c|c|}
\hline Transaction & Balance \\
\hline & \(+\$ 52\) \\
\hline+23 & \(+\$ 75\) \\
\hline-35 & \(+\$ 40\) \\
\hline-51 & \(-\$ 11\) \\
\hline+34 & \(+\$ 23\) \\
\hline+13 & \(+\$ 36\) \\
\hline-49 & \(-\$ 13\) \\
\hline
\end{tabular}
a What is the largest amount:
i credited (added) to the account
ii debited (subtracted) from the account?
b What is the smallest amount:
i credited to the account
ii debited from the account?
c What does the final balance indicate about the account?
15 One way to represent integers is with coloured dots. Use one blue dot to represent +1 and one red dot to represent -1 .

a How many red dots would you use to represent -3 ?
b Use the coloured dots to show each integer listed below. Draw each arrangement.
i 2
ii -4
iii 6
iv -5
v -1
vi 8
c One blue dot and one red dot together are called a zero pair. Explain how a zero pair represents 0 .
d Explain how this arrangement of dots represents -3.
e What integer does each arrangement represent?

16 Some friends are sitting in a circle. Kesha sits opposite Bri and three places to the left of Mo. Dee sits opposite Mo and three places to the left of Kesha. How many chairs are in the circle?

17 Find five consecutive numbers that add to -35 .

\section*{1 F Adding and subtracting integers}

\section*{Learning intentions}

By the end of this topic you will be able to .
\(\checkmark\) solve problems involving addition and subtraction of positive

Inter-year links
Year 7 5B Adding and subtracting positive numbers

\section*{Adding and subtracting positive integers}
- When adding a positive integer, move to the right on the number line.

For example, to calculate \(-4+5\), start at -4 and move 5 steps to the right.
\(-4+5=1\)

- When subtracting a positive integer, move to the left on the number line.

For example, to calculate \(-1-2\), start at -1 and move 2 steps to the left.
\(-1-2=-3\)

\section*{Adding and subtracting negative integers}
- When adding a negative integer, move to the left on the number line.

For example, to calculate \(4+(-3)\), start at 4 and move 3 steps to the left.
\[
\begin{aligned}
4+(-3) & =4-3 \\
& =1
\end{aligned}
\]

- When subtracting a negative integer, move to the right on the number line.

For example, to calculate \(-2-(-5)\), start at -2 and move 5 steps to the right.
\[
\begin{aligned}
-2-(-5) & =-2+5 \\
& =3
\end{aligned}
\]

- Adding a negative number can be simplified to subtracting its value. \(\quad+(-)=-\)
- Subtracting a negative number can be simplified to adding its value. \(\quad-(-)=+\)

\section*{Example 1F. 1 Adding and subtracting positive numbers}

Use the number line to calculate:
a \(-6+8\)
b \(4-8\)

\section*{THNK}

\section*{WRITE}
a 1 Draw a number line.
2 Start at the first number, then add the second number by moving right.
a

b 1 Draw a number line.
2 Start at the first number, then subtract the second number by moving left.
b

\section*{Example 1F. 2 Adding and subtracting negative numbers}

Use the number line to calculate:
a \(4+(-7)\)

\section*{THINK}
a 1 Simplify the calculation. Remember that \(+(-)=-\).
2 Draw a number line.
3 Start at the first number, then subtract the value by moving left.
b \(-2-(-3)\)
b 1 Simplify the calculation. Write the problem in a simpler equivalent form by replacing \(-(-)\) with + .
2 Draw a number line.
3 Start at the first number, then add the value by moving right.

WRITE
a \(4+(-7)=4-7\)

\[
4+(-7)=-3
\]
b \(-2-(-3)=-2+3\)

\[
-2-(-3)=1
\]

\section*{Helpful hints}
\(\checkmark\) The negative sign is identical to the minus sign. The function of the symbol depends on its context.
\begin{tabular}{|c|l|l|}
\hline Example & Function of '-', & Read as \\
\hline-8 & Indicates the number is less than zero in value & 'negative eight' \\
\hline \(2-8\) & Indicates the operation of subtraction & 'two minus eight' \\
\hline\(-8+2\) & Indicates the number is less than zero in value & 'negative eight plus two' \\
\hline
\end{tabular}
\(\boldsymbol{\checkmark}\) Don't make assumptions about the sign of the answer - subtraction can produce positive numbers and addition can produce negative numbers!
\(\boldsymbol{\checkmark}\) When simplifying calculations involving negative numbers, only combine the signs located in between the numbers.
\[
+(-)=-\quad-(-)=+\quad+(+)=+\quad-(+)=-
\]

1 Write the addition or subtraction calculation shown in each diagram．Hint：Consider the starting point，the number of steps and the end point．
a

b

c

d

2 Match each diagram \((\mathbf{A}, \mathbf{B}, \mathbf{C})\) to the appropriate problem \((\mathbf{a}, \mathbf{b}, \mathbf{c})\) ．
A

\(\mathbf{B} \underset{8}{ }\)
b \(-12+3\)
C
c 12－3

3 Calculate each result for question 2.
1 1．1 4 Use a number line to calculate：
a \(-4+7\)
b \(1+5\)
c \(8-3\)
d \(-2-6\)
e \(-9+5\)
f \(3-6\)
g \(-5-1\)
h 7－2
i \(2-6\)

5 Draw a number line from -20 to 20 and use it to calculate：
a 15－12
b \(-17+11\)
c \(9-13\)
d \(-4+20\)
g \(-14-3\)
e \(-2-17\)
f \(8-18\)
h \(-16+14\)
i \(11-24\)
j \(-19+19\)
k \(-10-10\)
\(1-18+20\)

6 Decide whether each result is positive，negative or zero．
a \(-3-7\)
b \(16+14\)
c 8－15
d \(-13+13\)
e \(-11+18\)
f \(19-12\)
g \(-17+4\)
h \(-14-10\)
i \(\quad 17-20\)

7 Simplify the following calculations by using + or - to fill the gap．
a \(-3-(+7)=-3\) \(\qquad\) 7
b \(1+(+6)=1\) \(\qquad\) 6
c \(-4+(-5)=-4\) \(\qquad\) 5
d \(2-(-4)=2\) \(\qquad\) 4
e \(5-(+9)=5 \ldots 9\)
f \(-6-(-8)=-6\) \(\qquad\) 8

8 Simplify each problem．
a \(-1-(-3)\)
b \(8-(+4)\)
c \(\quad-5+(-2)\)
d \(6-(-1)\)
e \(4+(+3)\)
f \(3-(+9)\)
g \(-5-(-8)\)
h \(-3+(+1)\)
i \(-7+(-3)\)

1 1．2 9 Use a number line to calculate：
a \(-4-(-7)\)
b \(9+(-3)\)
c \(2-(+6)\)
d \(-5-(-5)\)
e \(-8+(+7)\)
f \(6+(-1)\)
g \(-3-(-4)\)
h 4 －\((+9)\)
i \(2-(-7)\)

10 Decide whether the result of each problem will be positive, negative or zero.
a 11 - (-8)
b \(-16-(+4)\)
c \(13-(+13)\)
d \(15-(+18)\)
e \(-10-(-7)\)
f \(-17-(+11)\)
g \(8-(-14)\)
h \(12-(+19)\)

11 Complete each addition table.
a \begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{+}\) & -5 & -3 & 0 & 1 & 4 \\
\hline-3 & & & & -2 & \\
\hline-2 & & & & & \\
\hline-1 & & & -1 & & \\
\hline 3 & & & & & \\
\hline 6 & 1 & & & & \\
\hline
\end{tabular}
b
\begin{tabular}{|c|c|c|c|c|c|}
\hline+ & -10 & -14 & -7 & 13 & 19 \\
\hline 11 & & & & & \\
\hline 14 & & & & & \\
\hline-10 & & & & & \\
\hline-22 & & & & & \\
\hline-18 & & & & & \\
\hline
\end{tabular}

12 Calculate:
a \(-45+40\)
b \(-72-27\)
c \(56-88\)
d \(-34+43\)
e 130-170
f \(-213-62\)
g \(-158+400\)
h 286-168
i \(-505+505\)

13 Calculate:
a \(-2+5+7\)
b \(3-9+2\)
c 6-1-8
d \(-10+4-7\)
e \(-12+19-7\)
g \(33+22-65\)
f \(-20-11-2\)
h \(70-81-15\)
i \(-24-18+12\)
\[
\text { j } \quad 59-93+17
\]

14 Simplify each problem, and then calculate the result.
a \(-5-(+7)+(+6)\)
b \(9+(-2)-(-8)\)
c \(-4-(-3)+(+1)\)
e \(-22-(+5)+(+13)\)
g \(34+(-19)-(+7)\)
d \(8+(-6)-(-10)\)
f \(-14-(-8)+(-25)\)

15 You enter a lift at the 15 th floor and travel down 19 floors. Which level do you finish at? Show how you calculated your answer.

16 Sarah enters a lift at the third floor and travels down nine floors and then up five floors. What floor does she finish at? Show the problem you used to get your answer.

17 What is the difference between a temperature of \(-18^{\circ} \mathrm{C}\) and a temperature of \(33^{\circ} \mathrm{C}\) ? Show the subtraction problem you used to calculate the result.

18 Jess owes her brother \(\$ 60\).
a Write this amount as an integer.
b She pays him \(\$ 35\). Write an addition problem to work out the amount she still owes him.
c How much does Jess still owe her brother?

19 A bungee jumper dives from a platform（position A） 50 m above the water．He dips 2 m under the water（position B）before rebounding to a height 18 m below the platform（position C）．
a If the reference is the surface of the water，write positions A，B and C as integers．
b Write an expression to find the distance between：
i A and B
ii \(B\) and \(C\)
iii A and C ．
c Calculate each distance．
d What is the largest distance for part ce Explain why that is the largest distance．

20 A deep sea submersible is lowered into the ocean from a ship＇s deck 15 m above sea level．The unmanned vessel is on a mission to take photos of deep sea animals．

For each part，write an addition or subtraction problem and then calculate the answer．
a A deep sea anglerfish is 900 m below sea level．What vertical distance has the submersible travelled from the deck of the ship to reach this fish？
b A deep sea amphipod is 2500 m below sea level．How much further has the submersible travelled vertically to reach it？
c What vertical distance does the submersible now need to travel to return to the deck of the ship？
d When the ship gets back to the dock，the crane on board the ship lowers the submersible onto the dock． The crane lifts the submersible 2 m above the ship＇s deck，moves it horizontally at that height and then lowers it 8 m onto the dock．What is the height of the dock above sea level？

21 What number should be subtracted from each of these to give the result of 20？
a 65
b -10
d -347
\[
\text { e }-1000
\]

22 Find the missing integer to make each number sentence true．
a \(-54+33+\) \(\qquad\) \(=12\)
b \(\quad 121-\quad-50=-6\)
c \(-300+225-\) \(\qquad\) \(=50\)
d \(\qquad\) \(-58+73=-25\)

23 At the start of March，Tyra＇s bank account shows a balance of \(-\$ 310\) ．At the end of the month，it shows a balance of \(-\$ 247\) ．
a Calculate the difference between the two account balances．Show the subtraction problem you used to calculate the result．
b Interpret the result to part a．

Interactive skillsheet
Adding and subtracting

Investigation
Create a subtraction
（1）
Topic quiz
1F

\section*{1 G Multiplying and dividing integers}

\section*{Learning intentions}

By the end of this topic you will be able to ...
\(\checkmark\) solve problems involving multiplication and division of negative numbers
solve problems involving indices of negative numbers.

Inter-year links
Support Multiplying whole numbers
Year 7 1D Multiplying whole numbers

\section*{Multiplying integers}
- Multiplication is a form of repeated addition. For example, \(3 \times 4\) is the same as \(4+4+4\).
- Multiplication of negative integers can also be thought of as repeated addition. For example, \(2 \times-5\) is the same as \((-5)+(-5)\).
- When multiplying by a negative value, we are taking the negative value of the repeated addition. For example, \(-2 \times-5\) is the same as \(-[(-5)+(-5)]\).
- Multiplying two integers can give a result that is positive or negative (or zero), according to these rules.
\(\rightarrow\) The product of two positive integers is a positive integer.
\(\rightarrow\) The product of a positive integer and a negative integer is a negative integer.
\(\rightarrow\) The product of two negative integers is a positive integer.

\section*{Dividing integers}
- Division of integers follows the same rules as multiplication of integers.
\(\rightarrow\) The quotient of two positive integers is a positive integer.
\(\rightarrow\) The quotient of a positive integer and a negative integer is a negative integer.
\(\rightarrow\) The quotient of two negative integers is a positive integer.
\[
\begin{aligned}
& +\div+=+ \\
& +\div-=- \\
& -\div+=- \\
& -\div-=+
\end{aligned}
\]

\section*{Indices of negative numbers}
- When applying indices to negative numbers, the sign needs to be taken into account.
\[
\begin{aligned}
& \text { index } \\
& \downarrow \\
& \text { base } \rightarrow(-2)^{3}=(-2) \times(-2) \times(-2)=-8 \\
& \text { index form } \quad \text { expanded form } \quad \text { basic numeral }
\end{aligned}
\]
\(\rightarrow\) If the base is negative and the index is an even number, the basic numeral is positive.
\(\rightarrow\) If the base is negative and the index is an odd number, the basic numeral is negative.

\section*{Example 1G.1 Multiplying integers}

Evaluate each product.
a \(-4 \times 7\)
b \(-9 \times(-5)\)

\section*{THINK}
a 1 Determine whether the result is positive or negative. The signs are different, so the result is negative.
2 Calculate the product.
b 1 Determine whether the result is positive or negative. The signs are the same, so the result is positive.
2 Calculate the product.

\section*{WRITE}
a \(4 \times 7=28\)

So, \(-4 \times 7=-28\)
b \(9 \times 5=45\)

So, \(-9 \times(-5)=45\)

\section*{Example 1G. 2 Dividing integers}

Evaluate each quotient.
a \(-30 \div(-5)\)

\section*{THINK}
a 1 Decide whether the result is positive or negative. The signs are the same, so the result is positive.
2 Calculate the quotient.
b 1 Decide whether the result is positive or negative. The signs are different, so the result is negative.
2 Calculate the quotient.

So, \(-30 \div(-5)=6\)

\section*{b \(28 \div(-7)\)}

\section*{WRITE}
a \(30 \div 5=6\)
b \(28 \div 7=4\)

So, \(28 \div(-7)=-4\)

\section*{Example 1G.3 Multiplying three integers}

Evaluate the product \(-3 \times(-5) \times(-2)\).

\section*{THINK}

1 Work from left to right. Multiply the first two numbers and determine the sign. As the signs are the same, the result is positive.

2 Multiply the result by the third number and determine the sign. As the signs are different, the result is negative.

\section*{WRTE}
\(-3 \times(-5)=15\)
\(15 \times(-2)=-30\)
\(-3 \times(-5) \times(-2)=-30\)

\section*{Example 1G.4 Calculating the value of a number in index form}

Write each of these in expanded form and calculate their values.
a \((-3)^{2}\)
b \((-2)^{5}\)

\section*{THINK}
a 1 Write the calculation as a repeated multiplication.
2 Determine whether the result will be positive or negative. A negative multiplied by a negative is a positive.

3 Calculate the product.
b 1 Write the calculation as a repeated multiplication.
2 Continue to simplify the repeated multiplication. A negative multiplied by a negative is a positive. A positive multiplied by a negative is a negative.

3 Calculate the product.

\section*{WRITE}
a \((-3)^{2}=(-3) \times(-3)\)
\(=9\)
\[
\text { b } \begin{aligned}
(-2)^{5} & =(-2) \times(-2) \times(-2) \times(-2) \times(-2) \\
& =4 \times(-2) \times(-2) \times(-2) \\
& =(-8) \times(-2) \times(-2) \\
& =16 \times(-2) \\
& =-32
\end{aligned}
\]
\(\checkmark\) Be careful when determining the sign of a result when multiplying or dividing numbers.
If the signs are the same, then the result is positive.
If the signs are different, then the result is negative.
man Exercise 1G Multiplying and dividing integers

4-6, 7(b), 8, 9-10(d-f), 13(e-h), 14(c, d), 15(d-f), 16(c, d), 18, 20(c, d, f), 22, 23(a, b)

5(i-l), 7(b), 8, 9(g-i), 10(b, d, e), 14(c,d), 15(g-i), 20, 21, 23-26
16.1 1 Express these repeated additions as multiplications.
a \(9+9+9+9+9\)
b \((-7)+(-7)+(-7)+(-7)+(-7)+(-7)\)
c \(-(6+6+6+6+6+6+6+6+6+6)\)
d \(-[(-3)+(-3)+(-3)+(-3)]\)
16.1 2 Evaluate each product.
a \(3 \times(-4)\)
b \(7 \times 5\)
c \(-6 \times 2\)
d \(-3 \times(-9)\)
e \(-1 \times 8\)
f \(4 \times(-6)\)
i \(-4 \times 11\)
j \(7 \times(-1)\)
g \(-8 \times(-9)\)
h \(2 \times 10\)
k \(-2 \times(-4)\)
\(19 \times 5\)

1 6.2 3 Evaluate each quotient.
a \(15 \div(-3)\)
b \(-32 \div(-8)\)
c \(24 \div 4\)
d \(-63 \div 9\)
e \(-17 \div(-1)\)
f \(48 \div(-6)\)
i \(42 \div(-7)\)
j \(-12 \div 1\)
g \(-56 \div 8\)
h \(-81 \div(-9)\)
k \(-20 \div(-2)\)
\(172 \div(-8)\)

4 Evaluate each quotient.
a \(\frac{-48}{6}\)
b \(\frac{60}{-5}\)
c \(\frac{-51}{-3}\)
d \(\frac{150}{10}\)
e \(\frac{-200}{-25}\)
f \(\frac{57}{-19}\)

5 Calculate each of the following.
a \(5 \times(-7)\)
b \(-9 \div 3\)
c \(-28 \div(-4)\)
d \(-10 \times 6\)
e \(36 \div(-9)\)
f \(-15 \times(-4)\)
g \(-100 \div 20\)
h \(18 \times(-2)\)
i \(-3 \times(-30)\)
j \(25 \div(-25)\)
k \(-1 \times 38\)
\(1-45 \div(-1)\)

6 Complete each statement.
a \(-15 \times\) \(\qquad\) \(=45\)
b \(56 \div\) \(\qquad\) \(=-8\)
c \(\qquad\) \(\times(-4)=36\)
d \(\qquad\) \(\div(-25)=-4\)
e \(-140 \div\) \(\qquad\) \(=2\)
f \(\qquad\) \(\times 16=-48\)

7 Complete each multiplication table.
a
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & \(\mathbf{- 2}\) & \(\mathbf{- 1}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) \\
\hline \(\mathbf{- 4}\) & 8 & & & -4 & \\
\hline \(\mathbf{- 2}\) & & & & & \\
\hline \(\mathbf{0}\) & & & 0 & & \\
\hline \(\mathbf{2}\) & & & & & \\
\hline \(\mathbf{4}\) & & -4 & & & \\
\hline \(\mathbf{6}\) & & & & & \\
\hline
\end{tabular}
b
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & & \(\mathbf{- 2 0}\) & \(\mathbf{- 1 0}\) & & \(\mathbf{2 0}\) \\
\hline \(\mathbf{7}\) & & & & 70 & \\
\hline & & & -50 & & \\
\hline \(\mathbf{0}\) & & & & & \\
\hline \(\mathbf{- 2}\) & 50 & & & & \\
\hline & & 80 & & & \\
\hline & & & & & \(\mathbf{- 1 2 0}\) \\
\hline
\end{tabular}

8 A short way of writing \(-1 \times(-2)\) is \(-(-2)\). Write each problem as the product of two numbers and then calculate the result.
a \(-(-7)\)
b \(-(+12)\)
c \(-(-88)\)
d \(-(+25)\)
e \(-(8-5)\)
f \(-(-3+2)\)
16.3 9 Evaluate each product.
a \(-4 \times 3 \times(-5)\)
b \(3 \times(-2) \times 7\)
e \(-5 \times(-2) \times(-13)\)
h \(-11 \times 5 \times(-2)\)
c \(6 \times(-1) \times 9\)
d \(8 \times 2 \times(-3)\)
f \(-7 \times 3 \times(-4)\)
g \(4 \times 5 \times(-8)\)
i \(9 \times(-4) \times 5\)

10 Evaluate each statement.
a \(-2 \times 2 \times(-3) \times 3\)
b \(20 \div(-2) \div(-2) \div(-1)\)
c \(-4 \times(-1) \times 3 \times(-2)\)
d \(-18 \div(-2) \times 4 \div(-6)\)
e \(9 \times(-2) \div 3 \times(-5)\)
f \(-7 \times(-4) \div 2 \times(-3)\)

11 Which of these five options is the expanded form of \((-4)^{5}\) ?
A \(4 \times 4 \times 4 \times 4 \times 4\)
B \(5 \times 5 \times 5 \times 5\)
C \(-4 \times(-4) \times 4 \times 4 \times 4\)
D \(-4 \times(-4) \times(-4) \times(-4)\)
E \(-4 \times(-4) \times(-4) \times(-4) \times(-4)\)

12 Without calculating each result, predict whether the basic numeral is positive or negative.
a \((-2)^{9}\)
b \((-15)^{6}\)
c \((+6)^{7}\)
d \((-100)^{4}\)
16.4 13 Write each of these in expanded form and calculate their values.
a \((-9)^{2}\)
b \(8^{2}\)
c \((-6)^{3}\)
d \(7^{3}\)
e \((-5)^{4}\)
f \(\quad 1^{4}\)
g \(4^{5}\)
h \((-10)^{5}\)

14 By collecting like terms, write each of these multiplications in index form.
a \(-5 \times(-5) \times(-5) \times(-9) \times(-9) \times(-9) \times(-9)\)
b \(-4 \times(-4) \times(-4) \times(-4) \times(-4) \times(-4) \times 3 \times 3 \times 3\)
c \(7 \times 7 \times(-6) \times(-6) \times(-6) \times(-6) \times(-6) \times(-6)\)
d \(-8 \times(-8) \times(-8) \times(-8) \times(-10) \times(-10)\)

15 Write each of these in expanded form and calculate their values.
a \((-2)^{3} \times(-4)^{2}\)
b \((-5)^{2} \times 3^{4}\)
c \((-10)^{3} \times(-2)^{5}\)
d \((-3)^{5} \times(-1)^{2}\)
e \((-6)^{2} \times(-2)^{3}\)
f \((-1)^{4} \times 3^{2}\)
g \((-7)^{2} \times(-1)^{5}\)
h \((-3)^{3} \times(-2)^{2}\)
i \((-1)^{3} \times(-2)^{5}\)

16 Complete each set of problems. Describe the pattern you see.
a
\begin{tabular}{|l|}
\hline \(2 \times 5=\) \\
\(2 \times 4=\square\) \\
\(2 \times 3=\) \\
\(2 \times 2=\square\) \\
\(2 \times 1=\square\) \\
\(2 \times 0=\square\) \\
\(2 \times(-1)=\square\) \\
\(2 \times(-2)=\square\) \\
\(2 \times(-3)=\square\) \\
\(2 \times(-4)=\square\) \\
\(2 \times(-5)=\) \\
\hline
\end{tabular}
b
\[
\begin{aligned}
& -3 \times 5= \\
& -3 \times 4= \\
& -3 \times 3= \\
& -3 \times 2= \\
& -3 \times 1= \\
& -3 \times 0= \\
& -3 \times(-1)= \\
& -3 \times(-2)= \\
& -3 \times(-3)= \\
& -3 \times(-4)= \\
& -3 \times(-5)= \\
& \hline
\end{aligned}
\]
c

d
\[
\begin{array}{|l|}
\hline 5 \times(-5)= \\
5 \times(-4)= \\
5 \times(-3)= \\
5 \times(-2)= \\
5 \times(-1)= \\
5 \times 0= \\
5 \times 1= \\
5 \times 2= \\
5 \times 3= \\
5 \times 4= \\
5 \times 5= \\
\hline
\end{array}
\]

17 Dividing is the inverse operation to multiplying. Complete each statement.
a \(2 \times 3=\) \(\qquad\) so \(\qquad\) \(\div 2=3\) or \(\qquad\) \(\div 3=2\)
b \(2 \times(-3)=\) \(\qquad\) so \(\qquad\) \(\div 2=-3\) or \(\qquad\) \(\div(-3)=2\)
c \(-2 \times 3=\) \(\qquad\) so \(\qquad\) \(\div(-2)=3\) or \(\qquad\)
d \(-2 \times(-3)=\) \(\qquad\) so \(\qquad\) \(\div(-2)=-3\) or \(\square \div(-3)=-2\)
18 a Calculate each of these by first writing them in expanded form.
i \((-1)^{1}\)
ii \((-1)^{2}\)
iii \((-1)^{3}\)
iv \((-1)^{4}\)
\((-1)^{5}\)
vi \((-1)^{6}\)
b Which of these problems give a positive result?
c Which of these problems give a negative result?
d Explain your observations.
e Predict the result for:
i \((-1)^{13}\)
ii \((-1)^{32}\)
v \((-1)^{188}\)
iii \((-1)^{100}\)
iv \((-1)^{203}\)
vi \((-1)^{555}\)

19 a Using a calculator, determine:
i \(8 \times 0\)
ii \(-15 \times 0\)
iii \(0 \times 65\)
iv \(0 \times(-72)\)
b What do you notice when you multiply any integer by zero?
c Using a calculator, determine:
i \(0 \div(-9)\)
ii \(0 \div 26\)
iii \(0 \div(-11)\)
iv \(0 \div 39\)
d What do you notice when you divide zero by any integer?
20 Find two integers that have:
a a sum of -9 and a product of 18
b a sum of 4 and a product of -45
c a sum of -5 and a product of -66
d a difference of 2 and a product of 24
e a difference of 8 and a product of 9
f a difference of 18 and a product of -32 .

21 The product of 4 integers is 50 . What are the possible sums of these 4 integers if they are:
a all positive
b all negative
c either positive or negative?

Hint: First find all the factors of 50.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

22 Astro the dog has escaped from his yard．His owners decide to search along the road which runs east－west outside the house．This number line can be used to represent the road outside the family＇s house，with the house at zero．
a Tyler and Rhys walk 120 m west from the house and call Astro＇s name．What is their position on the number line？

b Sophie and Imogen walk 80 m east from the house and call Astro＇s name．What is their position on the number line？
c What is the distance between the pairs of searchers？
d Imogen now walks a further 30 m east．What is her new position on the number line？
e Rhys now walks 160 m east．What is his new position on the number line？
f What is the distance between：
i Sophie and Rhys ii Tyler and Imogen？
g Natalie starts at the house，then walks twice as far as Sophie but in the same direction as Tyler．What is her position on the number line？
h Hayden starts at the house，then walks one－third of the distance walked by Tyler and
 in the same direction．What is his position on the number line？
i A neighbour has found Astro in her yard， 60 m west of the family＇s house．Who is closest to Astro？How far and in which direction does he or she need to walk to collect the dog？
j If each member of the family now walks home，calculate the distance each person walked from the start of the search．
23 Squaring two different numbers can produce the same result．For example， \(3^{2}=9\) and \((-3)^{2}=9\) ．
a Which two numbers，when squared（raised to the power of 2 ），give 25 ？Why are there two numbers？
b Is there a number that，when squared，gives -25 ？Explain．
c How many different numbers can be cubed（raised to the power of 3 ）to give 8 ？
d How many different numbers can be cubed（raised to the power of 3 ）to give -8 ？
e Predict how many numbers can be raised to the power of 4 to give the same positive result．Hint：Try to raise a number to the power of 4 to give 16 ．Repeat for a negative result．
f Similarly，predict what would happen for indices of 5， 6 and so on．Provide examples to support your answer．
24 What number（s），when squared，give（s）each result？
a 49
b 81
c 1
d 4
e 64
f 100

25 What number（s），when cubed，give（s）each result？
a 27
b -125
c 64
d -1
e -64
f -1000

26 Consider \((-3)^{2}, 3^{2}\) and \(-3^{2}\) ．
a Which of these produce the same result？
b Explain how \((-3)^{2}\) is different from \(-3^{2}\) ．
c Decide whether each pair produces the same result．
i \(\quad(-4)^{3}\) and \(-4^{3}\)
ii \((-2)^{4}\) and \(-2^{4}\)
iii \((-1)^{6}\) and \(-1^{6}\)
iv \((-10)^{5}\) and \(-10^{5}\)
d Describe the general pattern you have seen．

\section*{Check your Student obook pro for these digital resources and more：}

Interactive skillsheet Multiplying and dividing negative numbers

Interactive skillsheet Indices of negative numbers

Investigation
Multiplication triangulation

Topic quiz
\(1 G\)

\section*{1H Order of operations}

\section*{Learning intentions}

By the end of this topic you will be able to ...
\(\boldsymbol{\checkmark}\) order operations in calculations involving two or more operations
\(\checkmark\) evaluate expressions including integers using the order of operations.

Inter-year links
Support Order of operations
Year \(7 \quad 1 \mathrm{H}\) Order of operations

\section*{Order of operations}
- 'BIDMAS' can be used to help remember the order of operations.
\(\left.\begin{array}{|l|l|l|}\hline \mathbf{B} & \text { Brackets } & \begin{array}{l}\text { Operations inside brackets are always performed first. } \\
\text { For example, } 2^{2} \times(4-6)-8 \div(-2)=2^{2} \times(-2)-8 \div(-2) .\end{array} \\
\hline \mathbf{I} & \begin{array}{l}\text { Indices (and } \\
\text { roots) }\end{array} & \begin{array}{l}\text { Next, evaluate indices and roots. } \\
\text { For example, } 2^{2} \times(-2)-8 \div(-2)=4 \times(-2)-8 \div(-2) .\end{array} \\
\hline \mathbf{D} & \begin{array}{l}\text { Division } \\
\mathbf{M}\end{array} & \text { Multiplication }\end{array} \begin{array}{l}\text { Then working from left to right, perform any multiplication } \\
\text { or division before adding or subtracting. } \\
\text { For example, } 4 \times(-2)-8 \div(-2)=-8-(-4) .\end{array}\right]\)\begin{tabular}{l}
Finally, working from left to right, perform any addition \\
and subtraction. \\
For example, \(-8-(-4)=-8+4=-4\).
\end{tabular}
- Operations at the same ranking are performed in order from left to right.

For example, \(5+8-2=13-2 \quad\) and \(\quad-20 \times \frac{3}{10}=-\frac{60}{10}\)
\[
=11 \quad \begin{aligned}
10 & =-6 .
\end{aligned}
\]
- Where there is more than one set of brackets in the problem, perform the operations inside the innermost brackets first.
For example, \([2 \times(5-3)]-7=[2 \times(5-3)]-7\)
\[
\begin{aligned}
& =(2 \times 2)-7 \\
& =4-7 \\
& =-3
\end{aligned}
\]
\begin{tabular}{|l|l|l|l|}
\hline Addition (+) & Subtraction (-) & Multiplication (\(\times\)) & Division (\(\div\)) \\
\hline - Sum & \(\bullet\) Difference & \(\bullet\) Product & \(\bullet\) Quotient \\
- Plus & \(\bullet\) Take away & \(\bullet\) Times & \(\bullet\) Divide \\
- More than & \(\bullet\) Less than & \(\bullet\) Multiply & \(\bullet\) \\
- Increase & \(\bullet\) Fewer & \(\bullet\) Groups of & \(\bullet\) \\
- Total & \(\bullet\) Reduce & & \\
- Together & \(\bullet\) Minus & & \\
\hline
\end{tabular}

\section*{Example 1H. 1 Order of operations}

Evaluate each of the following.
a \(-3+4 \times(-2)\)
b \(7-(-15) \div 5\)
c \((-2)^{3} \times 3+5\)

\section*{THINK}
a 1 Perform the multiplication and determine the sign of the result.
2 Simplify the signs and perform the subtraction.
b 1 Perform the division and determine the sign of the result.

2 Simplify the signs and perform the addition.
c 1 Apply the index and determine the sign of the result.
2 Perform the multiplication and determine the sign of the result.
3 Perform the addition.

\section*{Example 1H. 2 Order of operations with brackets}

Evaluate each of the following.
a \(-18 \div(4-10)+2 \times 7\)
b \(6-[-12 \div(9-5)]^{2}-2\)

\section*{THINK}
a 1 Perform any operations inside brackets first.
2 Working from left to right, perform division and multiplication before addition.

3 Perform the addition.
b 1 There are two sets of brackets. Perform
the operation in the innermost set of brackets first.
2 Perform the operation in the remaining set of brackets.
3 Apply the index before addition and subtraction.
4 Working from left to right, perform the subtraction.

\section*{WRITE}
a \(-3+4 \times(-2)=-3+(-8)\)
\[
\begin{aligned}
& =-3-8 \\
& =-11
\end{aligned}
\]
b \(7-(-15) \div 5=7-(-3)\)
\[
\begin{aligned}
& =7+3 \\
& =10
\end{aligned}
\]
c \((-2)^{3} \times 3+5=-8 \times 3+5\)
\[
=-24+5
\]
\(=-19\)

\section*{WRITE}
a \(-18 \div(4-10)+2 \times 7=-18 \div-6+2 \times 7\)
\[
\begin{aligned}
& =3+2 \times 7 \\
& =3+14 \\
& =17
\end{aligned}
\]
b \(6-[-12 \div(9-5)]^{2}-2=6-[-12 \div 4]^{2}-2\)
\[
\begin{aligned}
& =6-[-3]^{2}-2 \\
& =6-9-2 \\
& =-3-2 \\
& =-5
\end{aligned}
\]
\(\checkmark\) Remember to use BIDMAS rather than working from left to right.
\(\checkmark\) It is helpful to determine the sign at each step of a calculation before progressing.
\(\checkmark\) Calculating the value of a number in index form uses the following rules:
- If the base is negative and the index is an even number, the result is positive.
- If the base is negative and the index is an odd number, the result is negative.

For multiplying and dividing integers, recall the simplification rules for calculations involving two numbers.
- If the signs are the same, then the result is positive.
- If the signs are different, then the result is negative.
\[
+(-)=-\quad-(-)=+\quad+(+)=+\quad-(+)=-
\]
\(\boldsymbol{\checkmark}\) For adding and subtracting integers, recall the simplification rules. You can also use the number line to help you.

\section*{ANS \\ Exercise 1H Order of operations}
\(1-3,4\left(1^{\text {st }}\right.\) column), \(5-10,12,13(a, b)\)
\(3,4\left(2^{\text {nd }}\right.\) column), 5-9, 11, 13, 16
\(4\left(2^{\text {nd }}\right.\) column \(), 5-8,13,14,16-18\)

1 For each calculation, list the operations in the correct order in which they should be completed.
a \(-28-3 \times 7+11\)
b \(50+(34-19) \div(-5)\)
c \(12+3 \times \sqrt{4}-(-41)\)
d \(-20-2 \times 6+3^{2}\)
\(8+[9-(-3+2)]\)
f \(24 \div 6+[5+(-1)]^{2}\)

1H.1 2 Evaluate each of the following.
a \(16+28 \div 4\)
b \(60-2 \times 10\)
c \(27 \div 3+6 \times 11\)
d \(22+30 \times 2^{3} \div 15\)
e \(10 \times 8-7 \times \sqrt{9}\)
f \(6^{2}-8 \times 3+35\)

3 Evaluate each of the following.
a \(7-2 \times 8\)
b \(-1+16 \div 16\)
c \(\quad 28-3 \times 11\)
d \(-6+5 \times \sqrt[3]{27}-2\)
e \(-5+[-9+(-6+4)]\)
f \(42 \div(-7)+\left[5 \times(-2)^{2}\right]\)

1H. 24 Evaluate each of the following.
a \(72 \div(7+2)-2 \times 3\)
b \((27-14) \times(19+11)\)
c \(11-(4 \times 2-19)\)
d \((-3 \times 7+1) \div(8-12)\)
e \(9^{2}+7 \times(34-28)\)
f \(10 \times 8-4 \times\left(3^{2}+\sqrt[3]{8}\right)\)
g \(60 \div[6+(3 \times 5-1)]+48\)
h \(-12+[-48 \div(28-26)]^{2}-9\)

5 Evaluate each of the following.
a \((-3)^{2} \times(-14+10) \div(-6)\)
b \((-19+16)^{2}+(-23+17)^{3}\)
c \((-2)^{3} \times(-4) \div(-8)\)
d \((-2)^{2} \times\left(-2^{2}\right)\)
e \((120 \div 6)-(-10) \div \sqrt{4}\)
f \([-3+(150 \div 50)] \times(-7)^{2} \div 5^{2}\)

6 Write an equivalent sum to the following using a single sign. Do not calculate the answers.
a \(66+(-7)\)
b \(415-(-322)\)
c \(365-(+109)\)
d \(1750-(-3487)\)
e \(4376+(-237)\)
f \(6548-(+2399)\)

7 Identify the mistakes that have been made in the following calculations.
a \((-10+18)^{2}=-64\)
b \(-15+5 \times 5=-50\)
c \(-18 \div 3+\sqrt{36}=-2\)
d \((4-20) \div(-4)=-4\)
e \((-4)^{3} \div 8=8\)
f \(-5 \times 6+90 \div 10=39\)

8 Find the correct answers to the problems in question 7.
9 In which of the following do the brackets not change the value of \(-2^{2}+5 \times 3^{2}-2 \times \sqrt[3]{8}-7\) ?
a \((-2)^{2}+5 \times 3^{2}-2 \times \sqrt[3]{8}-7\)
b \(\left(-2^{2}+5\right) \times 3^{2}-2 \times \sqrt[3]{8}-7\)
c \(-2^{2}+\left(5 \times 3^{2}\right)-2 \times \sqrt[3]{8}-7\)
d \(-2^{2}+5 \times\left(3^{2}-2\right) \times \sqrt[3]{8}-7\)
e \(-2^{2}+5 \times 3^{2}-2 \times(\sqrt[3]{8}-7)\)

10 You have \(\$ 195\) to buy three shirts priced at \(\$ 58\) each.
a Write a calculation to show how to work out how much money you will have left over.
b Estimate how much money is left over by rounding each number to its leading digit then performing the calculation.
c Perform the calculation in part a and compare your estimate to the exact amount of money you have left over.
11 Using the images shown, calculate the cost of buying lunch for the class: 14 salad rolls, 11 samosa packs, 9 flavoured milks, 16 orange juices and 25 apples. Show the numbers and operations you used in the calculation.
\(\$ 7\)

\(\$ 6\) for three

\(\$ 4\)
\(\$ 4\)

12 When standing with outstretched arms above her head, the height of an Olympic diver is 3 m . She dives from the 10 m platform and touches the bottom of the pool with her outstretched fingers. The depth of the pool is 6 m .
a If the pool surface is the reference point for zero, write the maximum height of the diver above the pool surface as a directed number.
b Write the depth of the pool as a directed number.
c Write a subtraction problem to calculate the vertical distance covered by the diver. Hint: Find the difference between the two positions.
d What vertical distance has the diver covered?

13 The daily maximum and minimum temperatures at Thredbo were recorded over a week.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline Maximum temperature \(\left({ }^{\circ} \mathbf{C}\right)\) & 8 & 4 & -3 & -2 & -1 & 0 & 1 \\
\hline Minimum temperature \(\left({ }^{\circ} \mathbf{C}\right)\) & 2 & -3 & -5 & -6 & -6 & -3 & 0 \\
\hline
\end{tabular}
a Calculate the difference between the minimum and maximum temperatures for each day.
b Which day had the biggest range of temperatures?
c Calculate the average (mean) of:
i the maximum temperatures
ii the minimum temperatures.
d What is the difference between the average minimum and average maximum temperatures?

14 This incomplete statement shows some deposits and withdrawals made to Martin's bank account.
\begin{tabular}{|c|c|c|c|}
\hline Date & Reference & Transaction & Balance \\
\hline 30 April & - & - & \(+\$ 289\) \\
\hline 2 May & Tony's Newsagent & \(+\$ 132\) & \\
\hline 15 May & Movie Place & \(-\$ 17\) & \\
\hline 21 May & Bicycle City & \(-\$ 500\) & \\
\hline 24 May & Tony's Newsagent & \(+\$ 230\) & \\
\hline 26 May & DD Online Music Store & \(-\$ 38\) & \(+\$ 69\) \\
\hline 27 May & Sports and Stuff Pty Ltd & & \\
\hline
\end{tabular}
a Is a transaction of \(+\$ 132\) a deposit or a withdrawal?
b Is a transaction of \(-\$ 17\) a deposit or a withdrawal?
c What does it mean if the balance in Martin's account is:
i positive
ii negative?
d Find the account balance after the transaction made on 21 May.
e Find the balance after the transaction made on 24 May.
f What transaction is made on 27 May so that the account balance is \(+\$ 69\) ?
g Was Martin's account overdrawn at any stage? What penalty do banks have for an account that is overdrawn?
15 If the sum of two numbers is zero, is the product of the numbers positive or negative? Explain.
16 Find three integers whose sum is -5 and product is 120 .
17 Evaluate the following.
\(\mathbf{a} 6+\frac{52}{6+\frac{63}{3+\frac{48}{3+\frac{55}{3+\frac{96}{8+\frac{40}{8+\frac{4}{1+\frac{5}{1+\frac{8}{2}}}}}}}}}\)

b \(4-\frac{-64}{10-\frac{52}{15-\frac{132}{-3-\frac{-54}{-1-\frac{50}{3-\frac{7}{3-\frac{36}{4-\frac{10}{1-\frac{24}{8}}}}}}}}}\)

18 The 'Four Fours' problem uses four of the digit '4' and a combination of operations and brackets to write calculations that are equal to each integer.

For example, \(4+4+4+4=16\).
a Write a series of calculations, using four ' 4 's and any combination of the operations,,\(+- \times, \div\) and brackets, that are equal to each of the integers 0 to 20 . Are all of these integers possible using these operations?
b If we include the square root operation, \(\sqrt{4}\), can you write a calculation for each of the integers 1 to 20 ? If you couldn't find all the numbers in part \(\mathbf{a}\), see if you can find them using the square root operation.
c The factorial, \(n\) !, is an operation that multiplies each of the integers from a number, \(n\), down to 1 .
For example, \(4!=4 \times 3 \times 2 \times 1=24\).
Using the factorial with the above operations, which numbers are now possible?
d Explain how you could use your results above to write calculations that are equal to each of the integers from -20 to -1 .

\section*{Check your Student obook pro for these digital resources and more:}

\section*{Chapter summary}

\section*{Mathematical literacy review}

The following key terms are used in this chapter:

\section*{Quizlet}

Test your knowledge of this topic by working individually or in teams
- addition algorithm
- ascending order
- associative law
- base
- BIDMAS
- by-parts method
- common factor
- commutative law
- compensation method
- cube
- cube root
- descending order
- distributive law
- dividend
- divisor
- estimate
- expanded form
- exponent
- factors
- highest common factor
- index
- integers
- jump method
- leading digit
- lowest common multiple
- multiples
- multiplication algorithm
- negative integers
- order of operations
- place value
- positive integers
- product

1 Which mental strategy for adding or subtracting numbers involves rounding one number to make the calculations easier, and then adding or subtracting the amount by which the number was rounded up or down?

2 At which stage of BIDMAS are roots evaluated?
3 When performing a division, what is the quotient?
4 Identify the key terms being referenced in each of these definitions.
a the set of positive whole numbers, negative whole numbers and zero
b an approximate value which is close to the actual value
c the result of a multiplication
5 Using an example, provide a definition in your own words for the following key terms.
a multiples
b square root
c ascending order

6 Complete the following sentences using words from the key term list.
a The \(\qquad\) states that the order in which numbers are added does not change the result.
b The \(\qquad\) of a whole number are the whole numbers which divide exactly into that number.

\section*{Multiple choice}

1A 1 By first rounding each number to its leading digit, what is an estimate for \(526 \times 68\) ?
A 36000
B 35000
C 33664
D 31200
E 30000

1A 2 Which of the following numbers would be 700 when rounded to the nearest hundred?
A 789
B 750
C 634
D 651
E 792

18
3 What is 45783 added to 67398 ?
A 103181
B 113081
C 113171
D 112181
E 113181

4 What is 3765 subtracted from 9632 ?
A 5877
B 5967
C 6867
D 5867
E 5977

1 1B 5 Which calculation is being displayed in this diagram of the compensation method?

A \(154-76=78\)
B \(154-84=78\)
C \(\quad 154-84=74\)
D \(74+78=154\)
E \(78+84=154\)

1c 6 What is 144 multiplied by 212?
A 356
B 30536
C 30000
D 30528
E 28800

1c 7 What is 672 divided by 12 ?
A 58
B 57
C 56
D 55
E 54

1c \(\mathbf{8}\) What are the quotient and remainder when 1175 is divided by 7 ?
A quotient \(=166\), remainder \(=1\)
B quotient \(=167\), remainder \(=1\)
C quotient \(=168\), remainder \(=1\)
D quotient \(=166\), remainder \(=6\)
\(\mathbf{E}\) quotient \(=167\), remainder \(=6\)

1D 9 Which of the following is the HCF of 36 and 90?
A 5
B 9
C 36
D 18
E 3

1D 10 Which of the following represents the square root of 36 ?
A \(\sqrt{36}\)
B \(\sqrt{6}\)
C \(36^{2}\)
D \(6^{2}\)
E 216

1E 11 Which of the following numbers is smaller than -25 ?
A -18
B 2
C 25
D 0
E -30

1E 12 Which list of integers is written in descending order?
A \(14,11,6,0,-3,-5,-22\)
B \(14,11,6,0,-22,-5,-3\)
C \(-22,14,11,6,-5,-3,0\)
D \(-22,-5,-3,0,6,11,14\)
E \(0,6,11,14,-3,-5,-22\)

IF 13 What integer when added to 12 gives
A - 17
B -5
C 5
D 19
E - 19

1F 14 What is \(-24-20\) ?
A -4
B 4
C -44
D 44
E -48

IF 15 What does \(-35-(-47)\) simplify to?
A - \(35-47\)
B \(35-47\)
C \(35+47\)
D \(-35+47\)
E \(-47+35\)

1c 16 What is \(8 \div(-2)\) ?
A -16
B -4
C 4
D 16
E 6

16 17 What pair of integers gives a sum of -5 and a product of -36 ?
A - 4 and 9
B - 12 and 3
C 4 and 9
D -9 and -4
E -9 and 4

1818 Which gives the largest result?
A \((-2)^{6}\)
B \(6^{2}\)
C \((-1)^{10}\)
D \((-4)^{3}\)
E \(-(8)^{2}\)

1H 19 Which of these problems does not equal 5?
A \(-4-11+16-2+6\)
B \(8-13-1+17-6\)
C \(-7+5-9+22-6\)
D \(5-12+3-7+6\)
E \(8-9+20-18+4\)

IH 20 What operation is performed first in \(6 \times(12-5)+8^{2} \div 4\) ?
A 12-5
B \(8^{2}\)
C \(6 \times 12\)
D \(64 \div 4\)
E \(8 \div 4\)

\section*{Short answer}

1A 1 Round each number to its leading digit.
a 236
b 67145
c 3890
d 149046

1A 2 Estimate the result by first rounding each number to its leading digit.
a \(12345+3648\)
b \(94501-32566\)
c \(394 \times 338\)
d \(18654 \div 425\)

1B 3 Three houses in one street were all sold on the same day. The selling prices were \(\$ 765340, \$ 875900\) and \(\$ 655000\). What was the total price of all three houses?

1B 4 The City of Newcastle has 390519 residents, while the Blue Mountains region has 78121 residents. What is the difference in the number of residents between the two local government areas?

1c 5 Quinn sold 14 bouquets of roses today. If each bouquet has 12 roses, how many roses in total did Quinn sell?

1c 6 Tyler has saved up \(\$ 165\). He intends to spend the money on \(\$ 15 \mathrm{~T}\)-shirts. How many will he be able to buy?
1D 7 Aida sold equal numbers of jam donuts and cinnamon donuts today. Jam donuts are sold in boxes of six while cinnamon donuts are sold in packets of nine. What is the smallest number of each that Aida sold?

1D 8 Find the value of the following.
a \(6^{3}\)
b \(2^{7}\)
c 8 squared
d \(11^{2}\)

1D 9 Find the value of the following.
a square root of 4
b \(\sqrt{81}\)
c cube root of 27
d \(\sqrt[3]{125}\)

1E 10 Use the correct inequality sign to make each statement true.
a \(\quad-5 \square 2\)
b \(-5 \square-2\)
c \(\quad 7 \square-4\)
d \(\quad 4 \square-7\)

1E 11 Write each list of integers in ascending order.
a \(24,-40,20,-14,16,-22,-24\)
b \(-17,21,-27,-35,0,9,63\)
c \(-6,-66,86,6,-26,-16,-46\)
d \(65,-87,3,-300,190,45,-409\)
IF 12 Calculate:
a \(\quad-5+(-4)\)
b \(2+(7)\)
c \(\quad 22+(-34)\)
d \(\quad-50+(69)\)

1F 13 Tamara's bank account shows a balance of \(-\$ 28\). If she deposits \(\$ 150\), what is her new account balance?
1F 14 Overnight, the minimum temperature in Alice Springs was \(-3^{\circ} \mathrm{C}\). By 2 pm , the temperature had climbed to a maximum of \(18^{\circ} \mathrm{C}\). Calculate the difference between the minimum and maximum temperatures.

1F 15 Calculate:
a \(\quad-8+7\)
b \(-4-6\)
c \(\quad 17-25\)
d \(-44+34\)

1616 Calculate:
a \(7 \times(-8)\)
b \(-5 \times(-9)\)
c \(\quad-36 \div 4\)
d \(-100 \div(-20)\)
e \(-12 \times 0\)
f \(4 \times(-15)\)
g \(\frac{18}{-6}\)
h \(\frac{-42}{-3}\)

1c 17 Calculate:
a \(-6 \times 3 \times(-10)\)
b \([20 \div(-4)] \times 7\)
c \(\quad[-18 \div(-3)] \times 2\)
d \(\quad-5 \times(-2) \times(-4)\)

18 18 Calculate:
a \((-2)^{5}\)
b \((-3)^{2}\)
c \((-1)^{9}\)
d \((-10)^{4}\)

19 Calculate:
a \(33+(-40) \times 3 \div 10\)
b \(\quad 75-4 \times 11+6^{2} \div(-4)\)
c \(-10 \times 7-5 \times\left[(-4)^{2}-4\right]\)
d \(-120 \div[-9+(4 \times 8-11)]\)

1H 20 Calculate:
a \(-15 \times(-4+16)\)
b \((-4)^{2}-(-3)^{3}\)
c \(\left[-6 \times 7+(-10+7)^{2}\right] \div 3\)
d \(\left[-1+(-2)^{2}+(-3)^{3}\right] \div 3\)

\section*{Analysis}

1 Jez is the elephant keeper at the zoo.
He has two elephants to take care of: Mali and Man Jai. Mali weighs \(3^{3} \times 10^{2} \mathrm{~kg}\) while Man Jai weighs \(2 \times 3^{2} \times 10^{2} \mathrm{~kg}\).
a What is the weight of each elephant as a basic numeral?
b What is the difference in weight between the two elephants?
c What is the sum of the weights of the two elephants?
d What is the HCF between the weight of the elephants?

Jez has to divide the food for the elephants according to their weight.
e The elephants need about one-tenth of their weight in food. How much food does Jez have to provide?
\(\mathbf{f}\) How much food does each elephant need?
Man Jai gets sick and stops eating for a few days. As a result, he loses 5 kg each day. Jez writes the following expression to show Man Jai's weight after his illness: \(2 \times 3^{2} \times 10^{2}-5^{n}\) where \(n\) is the number of days he is sick. For example, if Man Jai is sick for 2 days, then Jez calculates his weight as \(2 \times 3^{2} \times 10^{2}-5^{2}\).
g Calculate Man Jai's weight after his illness using Jez's expression for 1, 2 and 3 days.
h Explain the problem with Jez's expression.
i Rewrite the expression so that it gives the correct weight of Man Jai after his illness.
2 The population figures (rounded to the nearest 100) for each state and territory of Australia at the end of June 2020 are displayed in this table.
\begin{tabular}{|l|c|}
\hline State or territory & Population \\
\hline New South Wales & 8164100 \\
\hline Victoria & 6694900 \\
\hline Queensland & 5174400 \\
\hline Western Australia & 2661900 \\
\hline South Australia & 1769300 \\
\hline Tasmania & 540600 \\
\hline Australian Capital Territory & 431100 \\
\hline Northern Territory & 246000 \\
\hline
\end{tabular}
a Determine the actual difference in population between NSW and Victoria.
b Round each population figure to the leading digit.
Use your answers from part \(\mathbf{b}\) to answer the following questions.
c Estimate the difference in population between NSW and Victoria. Compare this to part \(\mathbf{a}\).
d Estimate the population of Australia.

3 The daily minimum and maximum temperatures at a ski resort were recorded over a week.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & Mon & Tue & Wed & Thu & Fri & Sat & Sun \\
\hline Minimum temperature \(\left({ }^{\circ} \mathbf{C}\right)\) & 1 & -2 & -2 & -3 & -5 & -2 & -1 \\
\hline Maximum temperature \(\left({ }^{\circ} \mathbf{C}\right)\) & 8 & 5 & 9 & 4 & -1 & 5 & 5 \\
\hline
\end{tabular}
a Which day had:
i the highest temperature
ii the lowest temperature?
b Calculate the difference between the minimum and maximum temperatures for each day.
c Which day had the biggest range of temperatures?
d Calculate the average of the minimum and maximum temperatures.
e What is the difference between the average minimum and average maximum temperatures?

\section*{Chapter checklist}

Now that you have completed this chapter, reflect on your ability to do the following.

\section*{I can do this}

Round whole numbers
Estimate results of simple calculations
Assess the accuracy of estimations
Use mental strategies for addition and subtraction
Use the addition and subtraction algorithms for large numbers,
Use mental strategies for multiplication
Calculate products and quotients using the multiplication and division algorithms
Find the lowest common multiple and the highest common factor of two numbers
Evaluate squares and cubes of numbers
Evaluate square roots and cube rootsCompare the value of positive and negative numbers
Use negative numbers to represent real-life situations
Solve problems involving addition and subtraction of positive and negative numbers

Solve problems involving multiplication and division of negative numbersSolve problems involving indices of negative numbers
Order operations in calculations involving two or more operations Evaluate expressions including integers using the order of operations

Go back to
Topic 1E Negative integers
I need to review this
Go back to
Topic 1A Rounding and estimating

Go back to
Topic 1B Adding and subtracting whole numbers

Go back to
Topic 1C Multiplying and dividing whole numbers

Go back to
Topic 1D Multiples, factors, indices and roots

Go back to
Topic 1 F Adding and subtracting integers

Go back to
Topic 1G Multiplying and dividing integers

Go back to
Topic 1H Order of operations

\section*{Contact us}

\section*{For more information about this series please contact a secondary education consultant in your state or territory:}
Northern Territory
Melissa Wearne
E: melissa.wearne@oup.com
\(\mathrm{M}: 0447557931\)
Western Australia
Graeme Jordan
E: graeme.jordan@oup.com
\(\mathrm{M}: 0417\) 308 540
South Australia
Renee Kennedy
E: renee.kennedy@oup.com
\(\mathrm{M}: 0418857546\)
E: christopher.lowcock@oup.com
M: 0428949 935

\section*{Visit us at oup.com.au}
or contact customer support at oup.com.au/help
oup.com.au
@OxfordAustraliaNZ
facebook.com/oupanz
(in) linkedin.com/showcase/oxford university-press-australia-new-zealand```

